This work presents a tri-gate GaN junction high-electron-mobility transistor (JHEMT) concept in which the p–n junction wraps around the AlGaN/GaN fins in the gate region. This tri-gate JHEMT differs from all existing GaN FinFETs and tri-gate HEMTs, as they employ a Schottky or a metal-insulator-semiconductor (MIS) gate stack. A tri-gate GaN JHEMT is fabricated using p-type NiO with the gate metal forming an Ohmic contact to NiO. The device shows minimal hysteresis and a subthreshold slope of 63 ± 2 mV/decade with an on-off current ratio of 108. Compared to the tri-gate MISHEMTs fabricated on the same wafer, the tri-gate JHEMTs exhibit higher threshold voltage (VTH) and achieve positive VTH without the need for additional AlGaN recess. In addition, this tri-gate JHEMT with a fin width of 60 nm achieves a breakdown voltage (BV) > 1500 V (defined at the drain current of 1 μA/mm at zero gate bias) and maintains the high BV with the fin length scaled down to 200 nm. In comparison, the tri-gate MISHEMTs with narrower and longer fins show punch-through at high voltages. Moreover, when compared to planar enhancement mode HEMTs, tri-gate JHEMTs show significantly lower channel sheet resistance in the gate region. These results illustrate a stronger channel depletion and electrostatic control in the junction tri-gate compared to the MIS tri-gate and suggest great promise of the tri-gate GaN JHEMTs for both high-voltage power and low-voltage power/digital applications.

1.
R.
Sun
,
J.
Lai
,
W.
Chen
, and
B.
Zhang
,
IEEE Access
8
,
15529
(
2020
).
2.
D.
Hisamoto
,
W.-C.
Lee
,
J.
Kedzierski
,
H.
Takeuchi
,
K.
Asano
,
C.
Kuo
,
E.
Anderson
,
T.-J.
King
,
J.
Bokor
, and
C.
Hu
,
IEEE Trans. Electron Devices
47
,
2320
(
2000
).
3.
D.
Bhattacharya
and
N. K.
Jha
,
Adv. Electron.
2014
,
1
.
4.
K.
Ohi
and
T.
Hashizume
,
Jpn. J. Appl. Phys., Part 1
48
,
081002
(
2009
).
5.
S.
Liu
,
Y.
Cai
,
G.
Gu
,
J.
Wang
,
C.
Zeng
,
W.
Shi
,
Z.
Feng
,
H.
Qin
,
Z.
Cheng
,
K. J.
Chen
, and
B.
Zhang
,
IEEE Electron Device Lett.
33
,
354
(
2012
).
6.
K.-S.
Im
,
C.-H.
Won
,
Y.-W.
Jo
,
J.-H.
Lee
,
M.
Bawedin
,
S.
Cristoloveanu
, and
J.-H.
Lee
,
IEEE Trans. Electron Devices
60
,
3012
(
2013
).
7.
K.-S.
Im
,
Y.-W.
Jo
,
J.-H.
Lee
,
S.
Cristoloveanu
, and
J.-H.
Lee
,
IEEE Electron Device Lett.
34
,
381
(
2013
).
8.
K.-S.
Im
,
R.-H.
Kim
,
K.-W.
Kim
,
D.-S.
Kim
,
C. S.
Lee
,
S.
Cristoloveanu
, and
J.-H.
Lee
,
IEEE Electron Device Lett.
34
,
27
(
2013
).
9.
D. S.
Lee
,
H.
Wang
,
A.
Hsu
,
M.
Azize
,
O.
Laboutin
,
Y.
Cao
,
J. W.
Johnson
,
E.
Beam
,
A.
Ketterson
,
M. L.
Schuette
,
P.
Saunier
, and
T.
Palacios
,
IEEE Electron Device Lett.
34
,
969
(
2013
).
10.
Y.-W.
Jo
,
D.-H.
Son
,
C.-H.
Won
,
K.-S.
Im
,
J. H.
Seo
,
I. M.
Kang
, and
J.-H.
Lee
,
IEEE Electron Device Lett.
36
,
1008
(
2015
).
11.
E.
Ture
,
P.
Bruckner
,
B.-J.
Godejohann
,
R.
Aidam
,
M.
Alsharef
,
R.
Granzner
,
F.
Schwierz
,
R.
Quay
, and
O.
Ambacher
,
IEEE J. Electron Devices Soc.
4
,
1
(
2016
).
12.
D. F.
Brown
,
Y.
Tang
,
D.
Regan
,
J.
Wong
, and
M.
Micovic
,
IEEE Electron Device Lett.
38
,
1445
(
2017
).
13.
K.
Zhang
,
Y.
Kong
,
G.
Zhu
,
J.
Zhou
,
X.
Yu
,
C.
Kong
,
Z.
Li
, and
T.
Chen
,
IEEE Electron Device Lett.
38
,
615
(
2017
).
14.
B.
Lu
,
E.
Matioli
, and
T.
Palacios
,
IEEE Electron Device Lett.
33
,
360
(
2012
).
15.
J.
Ma
and
E.
Matioli
,
IEEE Electron Device Lett.
38
,
367
(
2017
).
16.
J.
Ma
and
E.
Matioli
,
IEEE Electron Device Lett.
38
,
1305
(
2017
).
17.
J.
Ma
,
C.
Erine
,
P.
Xiang
,
K.
Cheng
, and
E.
Matioli
,
Appl. Phys. Lett.
113
,
242102
(
2018
).
18.
L.
Nela
,
M.
Zhu
,
J.
Ma
, and
E.
Matioli
,
IEEE Electron Device Lett.
40
,
439
(
2019
).
19.
M.
Zhu
,
J.
Ma
,
L.
Nela
,
C.
Erine
, and
E.
Matioli
,
IEEE Electron Device Lett.
40
,
1289
(
2019
).
20.
C.-H.
Wu
,
J.-Y.
Chen
,
P.-C.
Han
,
M.-W.
Lee
,
K.-S.
Yang
,
H.-C.
Wang
,
P.-C.
Chang
,
Q. H.
Luc
,
Y.-C.
Lin
,
C.-F.
Dee
,
A. A.
Hamzah
, and
E. Y.
Chang
,
IEEE Trans. Electron Devices
66
,
3441
(
2019
).
21.
J.
Ma
,
C.
Erine
,
M.
Zhu
,
N.
Luca
,
P.
Xiang
,
K.
Cheng
, and
E.
Matioli
, in
IEEE International Electron Devices Meeting (IEDM)
(
2019
), pp.
4.1.1–4.1.4
.
22.
Y.
Zhang
and
T.
Palacios
,
IEEE Trans. Electron Devices
67
(
10
),
3960
3971
(
2020
).
23.
Y.
Zhang
,
M.
Sun
,
J.
Perozek
,
Z.
Liu
,
A.
Zubair
,
D.
Piedra
,
N.
Chowdhury
,
X.
Gao
,
K.
Shepard
, and
T.
Palacios
,
IEEE Electron Device Lett.
40
,
75
(
2019
).
24.
M.
Xiao
,
X.
Gao
,
T.
Palacios
, and
Y.
Zhang
,
Appl. Phys. Lett.
114
,
163503
(
2019
).
25.
K.
Ren
,
Y. C.
Liang
, and
C.-F.
Huang
, in
IEEE 4th Workshop Wide Bandgap Power Devices Applications (WiPDA)
(
2016
), pp.
319
323
.
26.
K.-S.
Im
,
H.-S.
Kang
,
J.-H.
Lee
,
S.-J.
Chang
,
S.
Cristoloveanu
,
M.
Bawedin
, and
J.-H.
Lee
,
Solid-State Electron.
97
,
66
(
2014
).
27.
S.
Takashima
,
Z.
Li
, and
T. P.
Chow
,
IEEE Trans. Electron Devices
60
,
3025
(
2013
).
28.
Y.
Uemoto
,
M.
Hikita
,
H.
Ueno
,
H.
Matsuo
,
H.
Ishida
,
M.
Yanagihara
,
T.
Ueda
,
T.
Tanaka
, and
D.
Ueda
,
IEEE Trans. Electron Devices
54
,
3393
(
2007
).
29.
N.
Kaneko
,
O.
Machida
,
M.
Yanagihara
,
S.
Iwakami
,
R.
Baba
,
H.
Goto
, and
A.
Iwabuchi
, in
21st International Symposium Power Semiconductors Devices (ICs)
(
2009
), pp.
25
28
.
30.
F.
Roccaforte
,
G.
Greco
,
P.
Fiorenza
,
V.
Raineri
,
G.
Malandrino
, and
R.
Lo Nigro
,
Appl. Phys. Lett.
100
,
063511
(
2012
).
31.
T.
Zhang
,
L.
Wang
,
X.
Li
,
Y.
Bu
,
T.
Pu
,
R.
Wang
,
L.
Li
, and
J.-P.
Ao
,
Appl. Surf. Sci.
462
,
799
(
2018
).
32.
V.
Rajagopal Reddy
,
P. R.
Sekhar Reddy
,
I.
Neelakanta Reddy
, and
C.-J.
Choi
,
RSC Adv.
6
,
105761
(
2016
).
33.
L.
Li
,
X.
Wang
,
Y.
Liu
, and
J.-P.
Ao
,
J. Vac. Sci. Technol., A
34
,
02D104
(
2016
).
34.
Y.
Zhang
,
M.
Sun
,
Z.
Liu
,
D.
Piedra
,
J.
Hu
,
X.
Gao
, and
T.
Palacios
,
Appl. Phys. Lett.
110
,
193506
(
2017
).
35.
M.
Xiao
,
Y.
Ma
,
K.
Cheng
,
K.
Liu
,
A.
Xie
,
E.
Beam
,
Y.
Cao
, and
Y.
Zhang
,
IEEE Electron Device Lett.
41
(
8
),
1177
1170
(
2020
).
36.
D.-H.
Son
,
Y.-W.
Jo
,
V.
Sindhuri
,
K.-S.
Im
,
J. H.
Seo
,
Y. T.
Kim
,
I. M.
Kang
,
S.
Cristoloveanu
,
M.
Bawedin
, and
J.-H.
Lee
,
Microelectron. Eng.
147
,
155
(
2015
).
38.
M.
Xiao
,
Z.
Du
,
J.
Xie
,
E.
Beam
,
X.
Yan
,
K.
Cheng
,
H.
Wang
,
Y.
Cao
, and
Y.
Zhang
,
Appl. Phys. Lett.
116
,
053503
(
2020
).
39.
X.
Li
,
M.
Van Hove
,
M.
Zhao
,
K.
Geens
,
V.-P.
Lempinen
,
J.
Sormunen
,
G.
Groeseneken
, and
S.
Decoutere
,
IEEE Electron Device Lett.
38
,
918
(
2017
).
40.
M.
Hua
,
X.
Cai
,
S.
Yang
,
Z.
Zhang
,
Z.
Zheng
,
J.
Wei
,
N.
Wang
, and
K. J.
Chen
, in
IEEE International Electron Devices Meeting (IEDM)
(
2018
), pp.
30.3.1–30.3.4
.
You do not currently have access to this content.