We present and experimentally verify a universal theoretical framework for the description of spin-charge interconversion in non-magnetic metal/insulator structures with interfacial spin–orbit coupling (ISOC). Our formulation is based on drift-diffusion equations supplemented with generalized boundary conditions. The latter encode the effects of ISOC and relate the electronic transport in such systems to spin loss and spin-charge interconversion at the interface. We demonstrate that the conversion efficiency depends solely on these interfacial parameters. We apply our formalism to two typical spintronic devices that exploit ISOC: a lateral spin valve and a multilayer Hall bar, for which we calculate the non-local resistance and the spin Hall magnetoresistance, respectively. Finally, we perform measurements on these two devices with a BiOx/Cu interface and verify that transport properties related to the ISOC are quantified by the same set of interfacial parameters.

1.
I.
Žutić
,
J.
Fabian
, and
S. D.
Sarma
,
Rev. Mod. Phys.
76
,
323
(
2004
).
2.
G.
Vignale
and
J.
Supercond
,
Nov. Magn.
23
,
3
(
2010
).
3.
J.
Sinova
,
S. O.
Valenzuela
,
J.
Wunderlich
,
C. H.
Back
, and
T.
Jungwirth
,
Rev. Mod. Phys.
87
,
1213
(
2015
).
4.
S. O.
Valenzuela
and
M.
Tinkham
,
Nature
442
,
176
(
2006
).
5.
T.
Kimura
,
Y.
Otani
,
T.
Sato
,
S.
Takahashi
, and
S.
Maekawa
,
Phys. Rev. Lett.
98
,
156601
(
2007
).
6.
A.
Aronov
and
Y. B.
Lyanda-Geller
,
JETP Lett.
50
,
431
(
1989
), available at http://www.jetpletters.ac.ru/ps/1132/article_17140.shtml.
7.
V. M.
Edelstein
,
Solid State Commun.
73
,
233
(
1990
).
8.
Y.
Ando
and
M.
Shiraishi
,
J. Phys. Soc. Jpn.
86
,
011001
(
2017
).
9.
A.
Soumyanarayanan
,
N.
Reyren
,
A.
Fert
, and
C.
Panagopoulos
,
Nature
539
,
509
(
2016
).
10.
I. M.
Miron
,
K.
Garello
,
G.
Gaudin
,
P.-J.
Zermatten
,
M. V.
Costache
,
S.
Auffret
,
S.
Bandiera
,
B.
Rodmacq
,
A.
Schuhl
, and
P.
Gambardella
,
Nature
476
,
189
(
2011
).
11.
L.
Liu
,
C.-F.
Pai
,
Y.
Li
,
H.
Tseng
,
D.
Ralph
, and
R.
Buhrman
,
Science
336
,
555
(
2012
).
12.
C.
Safeer
,
E.
Jué
,
A.
Lopez
,
L.
Buda-Prejbeanu
,
S.
Auffret
,
S.
Pizzini
,
O.
Boulle
,
I. M.
Miron
, and
G.
Gaudin
,
Nat. Nanotechnol.
11
,
143
(
2016
).
13.
V. T.
Pham
,
I.
Groen
,
S.
Manipatruni
,
W. Y.
Choi
,
D. E.
Nikonov
,
E.
Sagasta
,
C.-C.
Lin
,
T. A.
Gosavi
,
A.
Marty
,
L. E.
Hueso
,
I. A.
Young
, and
F.
Casanova
,
Nat. Electron.
3
,
309
(
2020
).
14.
S.
Manipatruni
,
D. E.
Nikonov
,
C.-C.
Lin
,
T. A.
Gosavi
,
H.
Liu
,
B.
Prasad
,
Y.-L.
Huang
,
E.
Bonturim
,
R.
Ramesh
, and
I. A.
Young
,
Nature
565
,
35
(
2019
).
15.
S.
Karube
,
K.
Kondou
, and
Y.
Otani
,
Appl. Phys. Express
9
,
033001
(
2016
).
16.
J.
Kim
,
Y.-T.
Chen
,
S.
Karube
,
S.
Takahashi
,
K.
Kondou
,
G.
Tatara
, and
Y.
Otani
,
Phys. Rev. B
96
,
140409
(
2017
).
17.
H.
Nakayama
,
Y.
Kanno
,
H.
An
,
T.
Tashiro
,
S.
Haku
,
A.
Nomura
, and
K.
Ando
,
Phys. Rev. Lett.
117
,
116602
(
2016
).
18.
H.
Tsai
,
S.
Karube
,
K.
Kondou
,
N.
Yamaguchi
,
F.
Ishii
, and
Y.
Otani
,
Sci. Rep.
8
,
5564
(
2018
).
19.
J.-C.
Rojas-Sánchez
,
S.
Oyarzún
,
Y.
Fu
,
A.
Marty
,
C.
Vergnaud
,
S.
Gambarelli
,
L.
Vila
,
M.
Jamet
,
Y.
Ohtsubo
,
A.
Taleb-Ibrahimi
,
P.
Le Fèvre
,
F.
Bertran
,
N.
Reyren
,
J.-M.
George
, and
A.
Fert
,
Phys. Rev. Lett.
116
,
096602
(
2016
).
20.
K.
Kondou
,
R.
Yoshimi
,
A.
Tsukazaki
,
Y.
Fukuma
,
J.
Matsuno
,
K.
Takahashi
,
M.
Kawasaki
,
Y.
Tokura
, and
Y.
Otani
,
Nat. Phys.
12
,
1027
(
2016
).
21.
E.
Lesne
,
Y.
Fu
,
S.
Oyarzun
,
J.
Rojas-Sánchez
,
D.
Vaz
,
H.
Naganuma
,
G.
Sicoli
,
J.-P.
Attané
,
M.
Jamet
,
E.
Jacquet
 et al.,
Nat. Mater.
15
,
1261
(
2016
).
22.
D. C.
Vaz
,
P.
Noël
,
A.
Johansson
,
B.
Göbel
,
F. Y.
Bruno
,
G.
Singh
,
S.
Mckeown-Walker
,
F.
Trier
,
L. M.
Vicente-Arche
,
A.
Sander
 et al.,
Nat. Mater.
18
,
1187
(
2019
).
23.
Y.
Niimi
,
Y.
Kawanishi
,
D. H.
Wei
,
C.
Deranlot
,
H. X.
Yang
,
M.
Chshiev
,
T.
Valet
,
A.
Fert
, and
Y.
Otani
,
Phys. Rev. Lett.
109
,
156602
(
2012
).
24.
J.
Linder
and
T.
Yokoyama
,
Phys. Rev. Lett.
106
,
237201
(
2011
).
25.
I. V.
Tokatly
,
E. E.
Krasovskii
, and
G.
Vignale
,
Phys. Rev. B
91
,
035403
(
2015
).
26.
J.
Borge
and
I. V.
Tokatly
,
Phys. Rev. B
96
,
115445
(
2017
).
27.
J.
Borge
and
I. V.
Tokatly
,
Phys. Rev. B
99
,
241401
(
2019
).
28.
C.
Sanz-Fernández
,
J.
Borge
,
I. V.
Tokatly
, and
F. S.
Bergeret
,
Phys. Rev. B
100
,
195406
(
2019
).
29.
V. P.
Amin
,
J.
Zemen
, and
M. D.
Stiles
,
Phys. Rev. Lett.
121
,
136805
(
2018
).
30.
V. P.
Amin
and
M. D.
Stiles
,
Phys. Rev. B
94
,
104420
(
2016
).
31.
V. P.
Amin
and
M. D.
Stiles
,
Phys. Rev. B
94
,
104419
(
2016
).
32.
Symmetry arguments alone cannot fix the relation between σsc and σcs.27 However, we will see by contrasting theory with experiment, that reciprocity requires σsc=σcs.
33.
Notice that, in principle, an additional divergenceless term may appear in the rhs of Eq. (5). Indeed, as demonstrated in Ref. 27, symmetry allows for a term proportional to the out-of-plane component of the spin ECP. In the present work, we only consider spin polarization parallel to the I/N interface and, hence, we neglect that term.
34.
S.
Takahashi
and
S.
Maekawa
,
Phys. Rev. B
67
,
052409
(
2003
).
35.
Y.
Niimi
,
H.
Suzuki
,
Y.
Kawanishi
,
Y.
Omori
,
T.
Valet
,
A.
Fert
, and
Y.
Otani
,
Phys. Rev. B
89
,
054401
(
2014
).
36.
H.
Isshiki
,
P.
Muduli
,
J.
Kim
,
K.
Kondou
, and
Y.
Otani
, preprint arXiv:1901.03095 (
2019
).
37.
V. T.
Pham
,
L.
Vila
,
G.
Zahnd
,
A.
Marty
,
W.
Savero-Torres
,
M.
Jamet
, and
J.-P.
Attané
,
Nano Lett.
16
,
6755
(
2016
).
38.
T.
Kimura
,
J.
Hamrle
, and
Y.
Otani
,
Phys. Rev. B
72
,
014461
(
2005
).
39.
T.
Kimura
,
J.
Hamrle
, and
Y.
Otani
,
Appl. Phys. Lett.
85
,
3501
(
2004
).
40.
M.
Isasa
,
M. C.
Martínez-Velarte
,
E.
Villamor
,
C.
Magén
,
L.
Morellón
,
J. M.
De Teresa
,
M. R.
Ibarra
,
G.
Vignale
,
E. V.
Chulkov
,
E. E.
Krasovskii
,
L. E.
Hueso
, and
F.
Casanova
,
Phys. Rev. B
93
,
014420
(
2016
).
41.
E.
Sagasta
,
Y.
Omori
,
M.
Isasa
,
Y.
Otani
,
L. E.
Hueso
, and
F.
Casanova
,
Appl. Phys. Lett.
111
,
082407
(
2017
).
42.
H.
Tsai
,
K.
Kondou
, and
Y.
Otani
,
Jpn. J. Appl. Phys., Part 1
58
,
110907
(
2019
).
43.
In principle, any transport measurement in a system with a linear response will fulfill the Onsager reciprocity.57–59 Within our theory, the global reciprocity is guarantied by σsc=σcs. Importantly, the global reciprocity does not imply a point-wise identity of the local current densities.
44.
J. R.
Sánchez
,
L.
Vila
,
G.
Desfonds
,
S.
Gambarelli
,
J.
Attané
,
J.
De Teresa
,
C.
Magén
, and
A.
Fert
,
Nat. Commun.
4
,
2944
(
2013
).
45.
Y.-T.
Chen
,
S.
Takahashi
,
H.
Nakayama
,
M.
Althammer
,
S. T. B.
Goennenwein
,
E.
Saitoh
, and
G. E. W.
Bauer
,
Phys. Rev. B
87
,
144411
(
2013
).
46.
H.
Nakayama
,
M.
Althammer
,
Y.-T.
Chen
,
K.
Uchida
,
Y.
Kajiwara
,
D.
Kikuchi
,
T.
Ohtani
,
S.
Geprägs
,
M.
Opel
,
S.
Takahashi
 et al.,
Phys. Rev. Lett.
110
,
206601
(
2013
).
47.
X.-P.
Zhang
,
F. S.
Bergeret
, and
V. N.
Golovach
,
Nano Lett.
19
,
6330
(
2019
).
48.
A.
Brataas
,
Y. V.
Nazarov
, and
G. E.
Bauer
,
Phys. Rev. Lett.
84
,
2481
(
2000
).
49.
Following our convention, the vector n normal to the interface, points from the Cu towards the insulating YIG layer.
50.
N.
Vlietstra
,
J.
Shan
,
V.
Castel
,
J.
Ben Youssef
,
G. E. W.
Bauer
, and
B. J.
van Wees
,
Appl. Phys. Lett.
103
,
032401
(
2013
).
51.
M.
Althammer
,
S.
Meyer
,
H.
Nakayama
,
M.
Schreier
,
S.
Altmannshofer
,
M.
Weiler
,
H.
Huebl
,
S.
Geprägs
,
M.
Opel
,
R.
Gross
,
D.
Meier
,
C.
Klewe
,
T.
Kuschel
,
J.-M.
Schmalhorst
,
G.
Reiss
,
L.
Shen
,
A.
Gupta
,
Y.-T.
Chen
,
G. E. W.
Bauer
,
E.
Saitoh
, and
S. T. B.
Goennenwein
,
Phys. Rev. B
87
,
224401
(
2013
).
52.
T.
Kosub
,
S.
Vélez
,
J. M.
Gomez-Perez
,
L. E.
Hueso
,
J.
Fassbender
,
F.
Casanova
, and
D.
Makarov
,
Appl. Phys. Lett.
113
,
222409
(
2018
).
53.
E.
Villamor
,
M.
Isasa
,
S.
Vélez
,
A.
Bedoya-Pinto
,
P.
Vavassori
,
L. E.
Hueso
,
F. S.
Bergeret
, and
F.
Casanova
,
Phys. Rev. B
91
,
020403
(
2015
).
54.
K. S.
Das
,
F. K.
Dejene
,
B. J.
van Wees
, and
I. J.
Vera-Marun
,
Appl. Phys. Lett.
114
,
072405
(
2019
).
55.
L. J.
Cornelissen
,
K. J. H.
Peters
,
G. E. W.
Bauer
,
R. A.
Duine
, and
B. J.
van Wees
,
Phys. Rev. B
94
,
014412
(
2016
).
56.
N.
Vlietstra
,
J.
Shan
,
V.
Castel
,
B. J.
van Wees
, and
J.
Ben Youssef
,
Phys. Rev. B
87
,
184421
(
2013
).
57.
H. B. G.
Casimir
, “
On Onsager's principle of microscopic reversibility
,”
Rev. Mod. Phys.
17
,
343
350
(
1945
).
58.
L.
Onsager
, “
Reciprocal relations in irreversible processes. I
,”
Phys. Rev.
37
,
405
(
1931
).
59.
L.
Onsager
, “
Reciprocal relations in irreversible processes. II
,”
Phys. Rev.
38
,
2265
(
1931
).

Supplementary Material

You do not currently have access to this content.