Ion migration into blocking layers toward the metallic electrodes is studied within a semiconductor device model framework. We find that ion leakage into the blocking layers and their accumulation at the electrode interface are significantly affected by the electronic injection barrier at the contact. Specifically, we find that if the device structure promotes, under light, hole (electron) accumulation within the perovskite layer, these excess holes (electrons) would release an almost equivalent number of cations (anions) into the transport layers toward the contacts. Our analysis suggests that it would be beneficial to include intentional doping of the blocking layers and that it should follow the “just enough” strategy.

1.
N.
Onoda-Yamamuro
,
T.
Matsuo
, and
H.
Suga
,
J. Phys. Chem. Solids
53
(
7
),
935
939
(
1992
).
2.
A.
Kojima
,
K.
Teshima
,
Y.
Shirai
, and
T.
Miyasaka
,
J. Am. Chem. Soc.
131
(
17
),
6050
6051
(
2009
).
3.
M. M.
Lee
,
J.
Teuscher
,
T.
Miyasaka
,
T. N.
Murakami
, and
H. J.
Snaith
,
Science
338
(
6107
),
643
647
(
2012
).
4.
I.
Chung
,
B.
Lee
,
J.
He
,
R. P. H.
Chang
, and
M. G.
Kanatzidis
,
Nature
485
(
7399
),
486
489
(
2012
).
5.
H.-S.
Kim
,
C.-R.
Lee
,
J.-H.
Im
,
K.-B.
Lee
,
T.
Moehl
,
A.
Marchioro
,
S.-J.
Moon
,
R.
Humphry-Baker
,
J.-H.
Yum
,
J. E.
Moser
,
M.
Grätzel
, and
N.-G.
Park
,
Sci. Rep.
2
(
1
),
591
(
2012
).
6.
NREL
, “
Best research-cell efficiency chart
” (last accessed May 2020), available at https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200406.pdf.
7.
A.
Buin
,
P.
Pietsch
,
J.
Xu
,
O.
Voznyy
,
A. H.
Ip
,
R.
Comin
, and
E. H.
Sargent
,
Nano Lett.
14
(
11
),
6281
6286
(
2014
).
8.
H. J.
Snaith
,
A.
Abate
,
J. M.
Ball
,
G. E.
Eperon
,
T.
Leijtens
,
N. K.
Noel
,
S. D.
Stranks
,
J. T.-W.
Wang
,
K.
Wojciechowski
, and
W.
Zhang
,
J. Phys. Chem. Lett.
5
(
9
),
1511
1515
(
2014
).
9.
E. L.
Unger
,
E. T.
Hoke
,
C. D.
Bailie
,
W. H.
Nguyen
,
A. R.
Bowring
,
T.
Heumuller
,
M. G.
Christoforo
, and
M. D.
McGehee
,
Energy Environ. Sci.
7
(
11
),
3690
3698
(
2014
).
10.
J. M.
Azpiroz
,
E.
Mosconi
,
J.
Bisquert
, and
F.
De Angelis
,
Energy Environ. Sci.
8
(
7
),
2118
2127
(
2015
).
11.
D. A.
Egger
,
E.
Edri
,
D.
Cahen
, and
G.
Hodes
,
J. Phys. Chem. Lett.
6
(
2
),
279
282
(
2015
).
12.
K.
Miyano
,
M.
Yanagida
,
N.
Tripathi
, and
Y.
Shirai
,
J. Phys. Chem. Lett.
7
(
12
),
2240
2245
(
2016
).
13.
T. S.
Sherkar
,
C.
Momblona
,
L.
Gil-Escrig
,
H. J.
Bolink
, and
L. J. A.
Koster
,
Adv. Energy Mater.
7
(
13
),
1602432
(
2017
).
14.
J.-W.
Lee
,
S.-G.
Kim
,
J.-M.
Yang
,
Y.
Yang
, and
N.-G.
Park
,
APL Mater.
7
(
4
),
041111
(
2019
).
15.
F.
Galatopoulos
,
I. T.
Papadas
,
G. S.
Armatas
, and
S. A.
Choulis
,
Adv. Mater. Interfaces
5
(
20
),
1800280
(
2018
).
16.
B.
Rivkin
,
P.
Fassl
,
Q.
Sun
,
A. D.
Taylor
,
Z.
Chen
, and
Y.
Vaynzof
,
ACS Omega
3
(
8
),
10042
10047
(
2018
).
17.
N.
Tessler
and
Y.
Vaynzof
,
ACS Energy Lett.
5
(
4
),
1260
1270
(
2020
).
18.
A.
Walsh
and
S. D.
Stranks
,
ACS Energy Lett.
3
(
8
),
1983
1990
(
2018
).
19.
M.
Saliba
,
J. P.
Correa-Baena
,
M.
Gratzel
,
A.
Hagfeldt
, and
A.
Abate
,
Angew. Chem.-Int. Ed.
57
(
10
),
2554
2569
(
2018
).
20.
P. H.
Joshi
,
L.
Zhang
,
I. M.
Hossain
,
H. A.
Abbas
,
R.
Kottokkaran
,
S. P.
Nehra
,
M.
Dhaka
,
M.
Noack
, and
V. L.
Dalal
,
AIP Adv.
6
(
11
),
115114
(
2016
).
21.
N.
Tessler
and
Y.
Vaynzof
,
ACS Appl. Energy Mater.
1
(
2
),
676
683
(
2018
).
22.
O. J.
Sandberg
,
J.
Kurpiers
,
M.
Stolterfoht
,
D.
Neher
,
P.
Meredith
,
S.
Shoaee
, and
A.
Armin
,
Adv. Mater. Interfaces
7
,
2000041
(
2020
).
23.
M. T.
Neukom
,
A.
Schiller
,
S.
Züfle
,
E.
Knapp
,
J.
Ávila
,
D.
Pérez-del-Rey
,
C.
Dreessen
,
K. P. S.
Zanoni
,
M.
Sessolo
,
H. J.
Bolink
, and
B.
Ruhstaller
,
ACS Appl. Mater. Interfaces
11
(
26
),
23320
23328
(
2019
).
24.
D.
Moia
,
I.
Gelmetti
,
P.
Calado
,
W.
Fisher
,
M.
Stringer
,
O.
Game
,
Y.
Hu
,
P.
Docampo
,
D.
Lidzey
,
E.
Palomares
,
J.
Nelson
, and
P. R. F.
Barnes
,
Energy Environ. Sci.
12
(
4
),
1296
1308
(
2019
).
25.
S.
van Reenen
,
M.
Kemerink
, and
H. J.
Snaith
,
J. Phys. Chem. Lett.
6
(
19
),
3808
3814
(
2015
).
26.
C.
Eames
,
J. M.
Frost
,
P. R. F.
Barnes
,
B. C.
O'Regan
,
A.
Walsh
, and
M. S.
Islam
,
Nat. Commun.
6
,
7497
(
2015
).
27.
W.-J.
Yin
,
T.
Shi
, and
Y.
Yan
,
Appl. Phys. Lett.
104
(
6
),
063903
(
2014
).
28.
S.
Reichert
,
J.
Flemming
,
Q.
An
,
Y.
Vaynzof
,
J.-F.
Pietschmann
, and
C.
Deibel
,
Phys. Rev. Appl.
13
(
3
),
034018
(
2020
).
29.
Y.
Yuan
,
J.
Chae
,
Y.
Shao
,
Q.
Wang
,
Z.
Xiao
,
A.
Centrone
, and
J.
Huang
,
Adv. Energy Mater.
5
(
15
),
1500615
(
2015
).
30.
M. H.
Futscher
,
J. M.
Lee
,
L.
McGovern
,
L. A.
Muscarella
,
T.
Wang
,
M. I.
Haider
,
A.
Fakharuddin
,
L.
Schmidt-Mende
, and
B.
Ehrler
,
Mater. Horiz.
6
(
7
),
1497
1503
(
2019
).
31.
Y.-C.
Zhao
,
W.-K.
Zhou
,
X.
Zhou
,
K.-H.
Liu
,
D.-P.
Yu
, and
Q.
Zhao
,
Light
6
,
e16243
(
2017
).
32.
S. T.
Birkhold
,
J. T.
Precht
,
H.
Liu
,
R.
Giridharagopal
,
G. E.
Eperon
,
L.
Schmidt-Mende
,
X.
Li
, and
D. S.
Ginger
,
ACS Energy Lett.
3
(
6
),
1279
1286
(
2018
).
33.
S. G.
Motti
,
D.
Meggiolaro
,
S.
Martani
,
R.
Sorrentino
,
A. J.
Barker
,
F.
De Angelis
, and
A.
Petrozza
,
Adv. Mater.
31
(
47
),
1901183
(
2019
).
34.
N.
Tessler
,
Appl. Phys. Lett.
108
(
18
),
183503
(
2016
).
35.
O.
Magen
and
N.
Tessler
,
J. Appl. Phys.
121
(
19
),
195502
(
2017
).
36.
S.
Bitton
and
N.
Tessler
, “
Electronic blocking layers as ionic blocking layers in perovskite solar cells
,”
CCS Chem.
(submitted).
37.
P. K. H.
Ho
,
D. S.
Thomas
,
R. H.
Friend
, and
N.
Tessler
,
Science
285
(
5425
),
233
236
(
1999
).
You do not currently have access to this content.