We demonstrate a quantum key distribution (QKD) implementation over deployed dark telecom fibers with polarization-entangled photons generated at the O-band. One of the photons in the pairs is propagated through 10 km of deployed fiber, while the others are detected locally. Polarization drifts experienced by the photons propagating through the fibers are compensated with liquid crystal variable retarders. This ensures continuous and stable QKD operation with an average quantum bit error rate of 6.4% and a final key rate of 109 bits/s.

1.
C. H.
Bennett
and
G.
Brassard
, “
Quantum cryptography: Public key distribution and coin tossing
,”
Theor. Comput. Sci.
560
,
7
11
(
1984
).
2.
V.
Scarani
,
A.
Acín
,
G.
Ribordy
, and
N.
Gisin
, “
Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations
,”
Phys. Rev. Lett.
92
,
057901
(
2004
).
3.
H.-K.
Lo
,
X.
Ma
, and
K.
Chen
, “
Decoy state quantum key distribution
,”
Phys. Rev. Lett.
94
,
230504
(
2005
).
4.
A. K.
Ekert
, “
Quantum cryptography based on bell's theorem
,”
Phys. Rev. Lett.
67
,
661
663
(
1991
).
5.
C. H.
Bennett
,
G.
Brassard
, and
N. D.
Mermin
, “
Quantum cryptography without bell's theorem
,”
Phys. Rev. Lett.
68
,
557
559
(
1992
).
6.
A.
Acín
,
N.
Brunner
,
N.
Gisin
,
S.
Massar
,
S.
Pironio
, and
V.
Scarani
, “
Device-independent security of quantum cryptography against collective attacks
,”
Phys. Rev. Lett.
98
,
230501
(
2007
).
7.
D.
Meyrs
, “
Quantum key distribution and string oblivious transfer in noisy channels
,” in
Advances in Cryptology—CRYPTO'96
, edited by
N.
Koblitz
(
Springer
,
Berlin, Heidelberg
,
1996
), Vol.
1109
, p.
343
.
8.
H.-K.
Lo
and
H. F.
Chau
, “
Unconditional security of quantum key distribution over arbitrarily long distances
,”
Science
283
,
2050
2056
(
1999
), https://science.sciencemag.org/content/283/5410/2050.full.pdf.
9.
P. W.
Shor
and
J.
Preskill
, “
Simple proof of security of the bb84 quantum key distribution protocol
,”
Phys. Rev. Lett.
85
,
441
444
(
2000
).
10.
M.
Ben-Or
,
M.
Horodecki
,
D. W.
Leung
,
D.
Mayers
, and
J.
Oppenheim
, “
The universal composable security of quantum key distribution
,” in
Theory of Cryptography
, edited by
J.
Kilian
(
Springer
,
Berlin, Heidelberg
,
2005
), pp.
386
406
.
11.
N.
Lütkenhaus
, “
Security against individual attacks for realistic quantum key distribution
,”
Phys. Rev. A
61
,
052304
(
2000
).
12.
T.
Jennewein
,
C.
Simon
,
G.
Weihs
,
H.
Weinfurter
, and
A.
Zeilinger
, “
Quantum cryptography with entangled photons
,”
Phys. Rev. Lett.
84
,
4729
4732
(
2000
).
13.
T.
Schmitt-Manderbach
,
H.
Weier
,
M.
Fürst
,
R.
Ursin
,
F.
Tiefenbacher
,
T.
Scheidl
,
J.
Perdigues
,
Z.
Sodnik
,
C.
Kurtsiefer
,
J. G.
Rarity
,
A.
Zeilinger
, and
H.
Weinfurter
, “
Experimental demonstration of free-space decoy-state quantum key distribution over 144 km
,”
Phys. Rev. Lett.
98
,
010504
(
2007
).
14.
J. G.
Rarity
,
P. M.
Gorman
, and
P. R.
Tapster
, “
Secure key exchange over 1.9 km free-space range using quantum cryptography
,”
Electron. Lett.
37
,
512
(
2001
).
15.
R. J.
Hughes
,
J. E.
Nordholt
,
D.
Derkacs
, and
C. G.
Peterson
, “
Practical free-space quantum key distribution over 10 km in daylight and at night
,”
New J. Phys.
4
,
43
43
(
2002
).
16.
C.
Kurtsiefer
,
P.
Zarda
,
M.
Halder
,
H.
Weinfurter
,
P. M.
Gorman
,
P. R.
Tapster
, and
J. G.
Rarity
, “
A step towards global key distribution
,”
Nature
419
,
450
(
2002
).
17.
S.-K.
Liao
,
W.-Q.
Cai
,
W.-Y.
Liu
,
L.
Zhang
,
Y.
Li
,
J.-G.
Ren
,
J.
Yin
,
Q.
Shen
,
Y.
Cao
,
Z.-P.
Li
,
F.-Z.
Li
,
X.-W.
Chen
,
L.-H.
Sun
,
J.-J.
Jia
,
J.-C.
Wu
,
X.-J.
Jiang
,
J.-F.
Wang
,
Y.-M.
Huang
,
Q.
Wang
,
Y.-L.
Zhou
,
L.
Deng
,
T.
Xi
,
L.
Ma
,
T.
Hu
,
Q.
Zhang
,
Y.-A.
Chen
,
N.-L.
Liu
,
X.-B.
Wang
,
Z.-C.
Zhu
,
C.-Y.
Lu
,
R.
Shu
,
C.-Z.
Peng
,
J.-Y.
Wang
, and
J.-W.
Pan
, “
Satellite-to-ground quantum key distribution
,”
Nature
549
,
43
47
(
2017
).
18.
D.
Bunandar
,
A.
Lentine
,
C.
Lee
,
H.
Cai
,
C. M.
Long
,
N.
Boynton
,
N.
Martinez
,
C.
DeRose
,
C.
Chen
,
M.
Grein
,
D.
Trotter
,
A.
Starbuck
,
A.
Pomerene
,
S.
Hamilton
,
F. N. C.
Wong
,
R.
Camacho
,
P.
Davids
,
J.
Urayama
, and
D.
Englund
, “
Metropolitan quantum key distribution with silicon photonics
,”
Phys. Rev. X
8
,
021009
(
2018
).
19.
A.
Poppe
,
B.
Schrenk
,
F.
Hipp
,
M.
Peev
,
S.
Aleksic
,
G.
Franzl
,
A.
Ciurana
, and
V.
Martin
, “
Integration of quantum key distribution in metropolitan area networks
,” in
Research in Optical Sciences
(
Optical Society of America
,
2014
), p.
QW4A.6
.
20.
J. F.
Dynes
,
A.
Wonfor
,
W. W.-S.
Tam
,
A. W.
Sharpe
,
R.
Takahashi
,
M.
Lucamarini
,
A.
Plews
,
Z. L.
Yuan
,
A. R.
Dixon
,
J.
Cho
,
Y.
Tanizawa
,
J.-P.
Elbers
,
H.
Greißer
,
I. H.
White
,
R. V.
Penty
, and
A. J.
Shields
, “
Cambridge quantum network
,”
npj Quantum Inf.
5
,
101
(
2019
).
21.
S. K.
Joshi
,
D.
Aktas
,
S.
Wengerowsky
,
M.
Lončarić
,
S. P.
Neumann
,
B.
Liu
,
T.
Scheidl
,
Ž.
Samec
,
L.
Kling
,
A.
Qiu
,
M.
Stipčević
,
J. G.
Rarity
, and
R.
Ursin
, “
A trusted-node-free eight-user metropolitan quantum communication network
,” arXiv:1907.08229, [quant-ph] (
2019
).
22.
Telecommunication Standardization Sector of ITU
,
Characteristics of a Single-Mode Optical Fibre and Cable
(
Telecommunication Standardization Sector of ITU
,
2016
).
23.
A.
Treiber
,
A.
Poppe
,
M.
Hentschel
,
D.
Ferrini
,
T.
Lorünser
,
E.
Querasser
,
T.
Matyus
,
H.
Hübel
, and
A.
Zeilinger
, “
A fully automated entanglement-based quantum cryptography system for telecom fiber networks
,”
New J. Phys.
11
,
045013
(
2009
).
24.
S.
Wengerowsky
,
S. K.
Joshi
,
F.
Steinlechner
,
J. R.
Zichi
,
S. M.
Dobrovolskiy
,
R.
van der Molen
,
J. W. N.
Los
,
V.
Zwiller
,
M. A. M.
Versteegh
,
A.
Mura
,
D.
Calonico
,
M.
Inguscio
,
H.
Hübel
,
L.
Bo
,
T.
Scheidl
,
A.
Zeilinger
,
A.
Xuereb
, and
R.
Ursin
, “
Entanglement distribution over a 96-km-long submarine optical fiber
,”
Proc. Natl. Acad. Sci.
116
,
6684
6688
(
2019
), https://www.pnas.org/content/116/14/6684.full.pdf.
25.
S.
Wengerowsky
,
S. K.
Joshi
,
F.
Steinlechner
,
H.
Hübel
, and
R.
Ursin
, “
An entanglement-based wavelength-multiplexed quantum communication network
,”
Nature
564
,
225
228
(
2018
).
26.
C. Inc.
,
Corning smf-28e Optical Fiber Product Information
(
C. Inc
.,
2005
).
27.
J. A.
Grieve
,
Y.
Shi
,
H. S.
Poh
,
C.
Kurtsiefer
, and
A.
Ling
, “
Characterizing nonlocal dispersion compensation in deployed telecommunications fiber
,”
Appl. Phys. Lett.
114
,
131106
(
2019
), .
28.
N.
Gisin
,
J.
Von der Weid
, and
J.
Pellaux
, “
Polarization mode dispersion of short and long single-mode fibers
,”
J. Lightwave Technol.
9
,
821
827
(
1991
).
29.
G.
Ribordy
,
J.
Brendel
,
J.-D.
Gautier
,
N.
Gisin
, and
H.
Zbinden
, “
Long-distance entanglement-based quantum key distribution
,”
Phys. Rev. A
63
,
012309
(
2000
).
30.
M.
Brodsky
,
E. C.
George
,
C.
Antonelli
, and
M.
Shtaif
, “
Loss of polarization entanglement in a fiber-optic system with polarization mode dispersion in one optical path
,”
Opt. Lett.
36
,
43
45
(
2011
).
31.
G. B.
Xavier
,
N.
Walenta
,
G. V.
de Faria
,
G. P.
Temporão
,
N.
Gisin
,
H.
Zbinden
, and
J. P.
von der Weid
, “
Experimental polarization encoded quantum key distribution over optical fibres with real-time continuous birefringence compensation
,”
New J. Phys.
11
,
045015
(
2009
).
32.
S.
Fasel
,
N.
Gisin
,
G.
Ribordy
, and
H.
Zbinden
, “
Quantum key distribution over 30 km of standard fiber using energy-time entangled photon pairs: A comparison of two chromatic dispersion reduction methods
,”
Eur. Phys. J. D
30
,
143
148
(
2004
).
33.
X.
Liu
,
X.
Yao
,
H.
Wang
,
H.
Li
,
Z.
Wang
,
L.
You
,
Y.
Huang
, and
W.
Zhang
, “
Energy-time entanglement-based dispersive optics quantum key distribution over optical fibers of 20 km
,”
Appl. Phys. Lett.
114
,
141104
(
2019
), .
34.
M.-J.
Li
,
X.
Chen
, and
D. A.
Nolan
, “
Ultra low pmd fibers by fiber spinning
,” in
Proceedings of the Optical Fiber Communication Conference
(
Optical Society of America
,
2004
), p.
FA1
.
35.
A.
Lohrmann
,
C.
Perumangatt
,
A.
Villar
, and
A.
Ling
, “
Broadband pumped polarization entangled photon-pair source in a linear beam displacement interferometer
,”
Appl. Phys. Lett.
116
,
021101
(
2020
), .
36.
One can first apply a rotational operation to convert the |Φ+ state into a rotationally invariant |Ψ state, followed by another local rotation to undo polarization rotation in fiber and restore the |Ψ state. A final rotation converts the |Ψ back to the intended |Φ+ state. All three rotations are local operations performed on either Alice's or Bob's side.
37.
A.
Ling
,
K. P.
Soh
,
A.
Lamas-Linares
, and
C.
Kurtsiefer
, “
An optimal photon counting polarimeter
,”
J. Mod. Opt.
53
,
1523
1528
(
2006
), .
38.
J.
Rarity
,
P.
Owens
, and
P.
Tapster
, “
Quantum random-number generation and key sharing
,”
J. Mod. Opt.
41
,
2435
2444
(
1994
), .
39.
I.
Marcikic
,
A.
Lamas-Linares
, and
C.
Kurtsiefer
, “
Free-space quantum key distribution with entangled photons
,”
Appl. Phys. Lett.
89
,
101122
(
2006
), .
40.
C.
Ho
,
A.
Lamas-Linares
, and
C.
Kurtsiefer
, “
Clock synchronization by remote detection of correlated photon pairs
,”
New J. Phys.
11
,
045011
(
2009
).
41.
G.
Brassard
and
L.
Salvail
, “
Secret-key reconciliation by public discussion
,” in
Advances in Cryptology—EUROCRYPT'93
, edited by
T.
Helleseth
(
Springer Verlag
,
New York
,
1994
), Vol.
765
, p.
410
.
42.
T.
Sugimoto
and
K.
Yamazaki
, “
A study on secret key reconciliation protocol” cascade
,”
IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
E83-A
,
1987
(
2000
).
43.
C. H.
Bennett
,
G.
Brassard
, and
J.-M.
Robert
, “
Privacy amplification by public discussion
,”
SIAM J. Comput.
17
,
210
229
(
1988
), .
44.
A.
Poppe
,
A.
Fedrizzi
,
R.
Ursin
,
H. R.
Böhm
,
T.
Lorünser
,
O.
Maurhardt
,
M.
Peev
,
M.
Suda
,
C.
Kurtsiefer
,
H.
Weinfurter
,
T.
Jennewein
, and
A.
Zeilinger
, “
Practical quantum key distribution with polarization entangled photons
,”
Opt. Express
12
,
3865
3871
(
2004
).
45.
V. B.
Verma
,
B.
Korzh
,
F.
Bussières
,
R. D.
Horansky
,
A. E.
Lita
,
F.
Marsili
,
M. D.
Shaw
,
H.
Zbinden
,
R. P.
Mirin
, and
S. W.
Nam
, “
High-efficiency wsi superconducting nanowire single-photon detectors operating at 2.5 k
,”
Appl. Phys. Lett.
105
,
122601
(
2014
), .
46.
P. D.
Townsend
, “
Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing
,”
Electron. Lett.
33
,
188
190
(
1997
).
You do not currently have access to this content.