Anharmonicity related to crystal structures strongly affects the phonon propagation and reduces lattice thermal conductivity (κl). Associated with a higher order of anharmonicity, thermoelectric (TE) materials with a large Grüneisen parameter (γ) possess ultralow thermal conductivity (κtotal), which plays a decisive role in engineering of their TE performances. We report on the structural and TE transport properties of layered Bi2GeTe4, which belongs to the Bi2Te3 family of TE materials albeit with a larger unit cell. Bi2GeTe4 shows the electron dominated metallic nature throughout the temperature range with a carrier density of n = 8.23 × 1019 cm−3 at 300 K. Bi2GeTe4 exhibits an ultralow κtotal ∼ 0.52 W m−1 K−1 at 350 K with a high degree of anharmonicity as estimated by a large value of γ ∼ 4.24. Here, the calculated average phonon speed (νavg = 1.54 km s−1) and larger bond lengths support the observations of ultralow κtotal. The sufficiently lower value of κtotal makes Bi2GeTe4 a good candidate for high performance TE materials through appropriate electronic transport modulation.

1.
D. M.
Rowe
,
Thermoelectrics Handbook: Macro to Nano
, 1st ed. (
CRC Press
,
2006
).
2.
D. M.
Rowe
,
CRC Handbook of Thermoelectrics
, 1st ed. (
CRC Press
,
Boca Raton
,
1995
).
3.
G. J.
Snyder
and
E. S.
Toberer
,
Nat. Mater.
7
(
2
),
105
114
(
2008
).
4.
N. K.
Singh
,
J.
Pandey
,
S.
Acharya
, and
A.
Soni
,
J. Alloys Compd.
746
,
350
355
(
2018
).
5.
N. K.
Singh
,
S.
Bathula
,
B.
Gahtori
,
K.
Tyagi
,
D.
Haranath
, and
A.
Dhar
,
J. Alloys Compd.
668
,
152
158
(
2016
).
6.
D. L.
Medlin
and
G. J.
Snyder
,
Curr. Opin. Colloid Interface Sci.
14
(
4
),
226
235
(
2009
).
7.
A.
Soni
,
Y.
Shen
,
M.
Yin
,
Y.
Zhao
,
L.
Yu
,
X.
Hu
,
Z.
Dong
,
K. A.
Khor
,
M. S.
Dresselhaus
, and
Q.
Xiong
,
Nano Lett.
12
(
8
),
4305
4310
(
2012
).
8.
G.
Ding
,
J.
Li
, and
G.
Gao
,
RSC Adv.
5
(
112
),
91974
91978
(
2015
).
9.
L. D.
Hicks
,
T. C.
Harman
,
X.
Sun
, and
M. S.
Dresselhaus
,
Phys. Rev. B
53
(
16
),
R10493
R10496
(
1996
).
10.
M. G.
Kanatzidis
,
Chem. Mater.
22
(
3
),
648
659
(
2010
).
11.
Y.
Pei
,
A.
LaLonde
,
S.
Iwanaga
, and
G. J.
Snyder
,
Energy Environ. Sci.
4
(
6
),
2085
2089
(
2011
).
12.
S.
Bathula
,
M.
Jayasimhadri
,
B.
Gahtori
,
N. K.
Singh
,
K.
Tyagi
,
A. K.
Srivastava
, and
A.
Dhar
,
Nanoscale
7
(
29
),
12474
12483
(
2015
).
13.
L. D.
Zhao
,
H. J.
Wu
,
S. Q.
Hao
,
C. I.
Wu
,
X. Y.
Zhou
,
K.
Biswas
,
J. Q.
He
,
T. P.
Hogan
,
C.
Uher
,
C.
Wolverton
,
V. P.
Dravid
, and
M. G.
Kanatzidis
,
Energy Environ. Sci.
6
(
11
),
3346
3355
(
2013
).
14.
S.
Acharya
,
J.
Pandey
, and
A.
Soni
,
Appl. Phys. Lett.
109
(
13
),
133904
(
2016
).
15.
G.
Mahan
,
B.
Sales
, and
J.
Sharp
,
Phys. Today
50
(
3
),
42
(
1997
).
16.
J.
Pandey
,
S.
Mukherjee
,
D.
Rawat
,
S.
Athar
,
K. S.
Rana
,
R. C.
Mallik
, and
A.
Soni
,
ACS Appl. Energy Mater.
3
(
3
),
2175
(
2020
).
17.
T.
Tadano
,
Y.
Gohda
, and
S.
Tsuneyuki
,
Phys. Rev. Lett.
114
(
9
),
095501
(
2015
).
18.
J.-Y.
Hwang
,
M.-W.
Oh
,
K. H.
Lee
, and
S. W.
Kim
,
J. Mater. Chem. C
3
(
43
),
11271
11285
(
2015
).
19.
W.
Kim
,
J. Mater. Chem. C
3
(
40
),
10336
10348
(
2015
).
20.
C.
Chang
and
L.-D.
Zhao
,
Mater. Today Phys.
4
,
50
57
(
2018
).
21.
S.
Acharya
,
J.
Pandey
, and
A.
Soni
,
ACS Appl. Energy Mater.
2
(
1
),
654
660
(
2019
).
22.
S. I.
Kim
,
K. H.
Lee
,
H. A.
Mun
,
H. S.
Kim
,
S. W.
Hwang
,
J. W.
Roh
,
D. J.
Yang
,
W. H.
Shin
,
X. S.
Li
,
Y. H.
Lee
,
G. J.
Snyder
, and
S. W.
Kim
,
Science
348
(
6230
),
109
114
(
2015
).
23.
Y.
Zhou
,
X.
Li
,
S.
Bai
, and
L.
Chen
,
J. Cryst. Growth
312
(
6
),
775
780
(
2010
).
24.
M.
Samanta
,
K.
Pal
,
U. V.
Waghmare
, and
K.
Biswas
,
Angew. Chem.
59
(
12
),
4822
4829
(
2020
).
25.
L.
Tichý
,
M.
Frumar
, and
J.
Klikorka
,
Phys. Status Solidi A
56
(
1
),
323
326
(
1979
).
26.
A.
Chatterjee
and
K.
Biswas
,
Angew. Chem.
54
(
19
),
5623
5627
(
2015
).
27.
A.
Banik
and
K.
Biswas
,
Angew. Chem.
56
(
46
),
14561
14566
(
2017
).
28.
O. G.
Karpinskii
,
L. E.
Shelimova
,
M. A.
Kretova
, and
E. C.
Avilov
,
Phys. Status Solidi A
142
(
2
),
307
314
(
1994
).
29.
J.
Rodríguez-Carvajal
,
Physica B
192
(
1
),
55
69
(
1993
).
30.
L. A.
Kuznetsova
,
V. L.
Kuznetsov
, and
D. M.
Rowe
,
J. Phys. Chem. Solids
61
(
8
),
1269
1274
(
2000
).
31.
O. G.
Karpinsky
,
L. E.
Shelimova
,
M. A.
Kretova
, and
J. P.
Fleurial
,
J. Alloys Compd.
265
(
1
),
170
175
(
1998
).
32.
A.
Soni
,
Z.
Yanyuan
,
Y.
Ligen
,
M. K. K.
Aik
,
M. S.
Dresselhaus
, and
Q.
Xiong
,
Nano Lett.
12
(
3
),
1203
1209
(
2012
).
33.
N. K.
Singh
,
G.
Ramanath
, and
A.
Soni
,
AIP Conf. Proc.
2115
(
1
),
030625
(
2019
).
34.
K. A.
Borup
,
J.
de Boor
,
H.
Wang
,
F.
Drymiotis
,
F.
Gascoin
,
X.
Shi
,
L.
Chen
,
M. I.
Fedorov
,
E.
Müller
,
B. B.
Iversen
, and
G. J.
Snyder
,
Energy Environ. Sci.
8
(
2
),
423
435
(
2015
).
35.
H.-S.
Kim
,
Z. M.
Gibbs
,
Y.
Tang
,
H.
Wang
, and
G. J.
Snyder
,
APL Mater.
3
(
4
),
041506
(
2015
).
36.
Q.
Guo
,
J.-B.
Vaney
,
R.
Virtudazo
,
R.
Minami
,
Y.
Michiue
,
Y.
Yamabe-Mitarai
, and
T.
Mori
,
Inorg. Chem.
57
(
9
),
5258
5266
(
2018
).
37.
A.
Sussardi
,
T.
Tanaka
,
A. U.
Khan
,
L.
Schlapbach
, and
T.
Mori
,
J. Materiomics
1
(
3
),
196
204
(
2015
).
38.
M.
Samanta
,
K.
Pal
,
P.
Pal
,
U. V.
Waghmare
, and
K.
Biswas
,
J. Am. Chem. Soc.
140
(
17
),
5866
5872
(
2018
).
39.
D.
Bessas
,
I.
Sergueev
,
H. C.
Wille
,
J.
Perßon
,
D.
Ebling
, and
R. P.
Hermann
,
Phys. Rev. B
86
(
22
),
224301
(
2012
).
40.
R. T.
Liu
,
X.
Ren
,
G.
Liu
,
Y.
Zhou
,
Z.
Liu
,
C.
Lin
, and
Y.
Nan
,
Crystals
7
,
257
(
2017
).
41.
G.-E.
Lee
,
I.-H.
Kim
,
Y. S.
Lim
,
W.-S.
Seo
,
B.-J.
Choi
, and
C.-W.
Hwang
,
J. Electron. Mater.
43
(
6
),
1650
1655
(
2014
).
42.
M.-K.
Han
,
K.
Ahn
,
H.
Kim
,
J.-S.
Rhyee
, and
S.-J.
Kim
,
J. Mater. Chem.
21
(
30
),
11365
11370
(
2011
).
43.
S.
Prasad K
,
A.
Rao
,
B.
Gahtori
,
S.
Bathula
,
A.
Dhar
,
C.-C.
Chang
, and
Y.-K.
Kuo
,
Physica B
520
,
7
12
(
2017
).
You do not currently have access to this content.