We investigate laser-induced acoustic wave propagation through smooth and roughened titanium-coated glass substrates. Acoustic waves are generated in a controlled manner via the laser spallation technique. Surface displacements are measured during stress wave loading by the alignment of a Michelson-type interferometer. A reflective coverslip panel facilitates capture of surface displacements during loading of as-received smooth and roughened specimens. Through interferometric experiments, we extract the substrate stress profile at each laser fluence (energy per area). The shape and amplitude of the substrate stress profile are analyzed at each laser fluence. Peak substrate stress is averaged and compared between smooth specimens with the reflective panel and rough specimens with the reflective panel. The reflective panel is necessary because the surface roughness of the rough specimens precludes in situ interferometry. Through these experiments, we determine that the surface roughness employed has no significant effect on substrate stress propagation and smooth substrates are an appropriate surrogate to determine stress wave loading amplitude of roughened surfaces less than 1.2 μm average roughness (Ra). No significant difference was observed when comparing the average peak amplitude and loading slope in the stress wave profile for the smooth and rough configurations at each fluence.

1.
J.
Wang
,
R. L.
Weaver
, and
N. R.
Sottos
, “
A parametric study of laser induced thin film spallation
,”
Exp. Mech.
42
(
1
),
74
83
(
2002
).
2.
J.
Wang
,
N. R.
Sottos
, and
R. L.
Weaver
,
Thin Film Adhesion Measurement by Laser Induced Stress Waves
(
Department of Theoretical and Applied Mechanics (UIUC)
,
2003
).
3.
M. E.
Grady
,
P. H.
Geubelle
, and
N. R.
Sottos
, “
Interfacial adhesion of photodefinable polyimide films on passivated silicon
,”
Thin Solid Films
552
,
116
123
(
2014
).
4.
T. A.
Berfield
,
R.
Kitey
, and
S. S.
Kandula
, “
Adhesion strength of lead zirconate titanate sol-gel thin films
,”
Thin Solid Films
598
,
230
235
(
2016
).
5.
S. S. V.
Kandula
,
C. D.
Hartfield
,
P. H.
Geubelle
, and
N. R.
Sottos
, “
Adhesion strength measurement of polymer dielectric interfaces using laser spallation technique
,”
Thin Solid Films
516
(
21
),
7627
7635
(
2008
).
6.
J. D.
Boyd
,
C. S.
Miller
, and
M. E.
Grady
, “
Biofilm and cell adhesion strength on dental implant surfaces via the laser spallation technique
,” bioRxiv 2019.12.11.873240 (
2019
).
7.
V.
Gupta
,
J.
Wu
, and
A. N.
Pronin
, “
Effect of substrate orientation, roughness, and film deposition mode on the tensile strength and toughness of niobium–sapphire interfaces
,”
J. Am. Ceram. Soc.
80
(
12
),
3172
3180
(
1997
).
8.
J.
Martin
,
Z.
Schwartz
,
T.
Hummert
,
D.
Schraub
,
J.
Simpson
,
J.
Lankford
, Jr.
,
D. D.
Dean
,
D. L.
Cochran
, and
B.
Boyan
, “
Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast‐like cells (MG63)
,”
J. Biomed. Mater. Res.
29
(
3
),
389
401
(
1995
).
9.
L.
Hu
,
X.
Zhang
,
P.
Miller
,
M.
Ozkan
,
C.
Ozkan
, and
J.
Wang
, “
Cell adhesion measurement by laser-induced stress waves
,”
J. Appl. Phys.
100
(
8
),
084701
(
2006
).
10.
J.
Cai
,
Q.
Guan
,
P.
Lv
,
X.
Hou
,
Z.
Wang
, and
Z.
Han
, “
Adhesion strength of thermal barrier coatings with thermal-sprayed bondcoat treated by compound method of high-current pulsed electron beam and grit blasting
,”
J. Therm. Spray Technol.
24
(
5
),
798
806
(
2015
).
11.
G.
Bégué
,
G.
Fabre
,
V.
Guipont
,
M.
Jeandin
,
P.
Bilhe
,
J. Y.
Guedou
, and
F.
Lepoutre
, “
Laser shock adhesion test (LASAT) of EB-PVD TBCs: Towards an industrial application
,”
Surf. Coat. Technol.
237
,
305
312
(
2013
).
12.
J. D.
Boyd
,
C. S.
Miller
, and
M. E.
Grady
(
2019
). “
Biofilm and cell adhesion strength on titanium via the laser spallation technique
,” Materials Data Facility.
13.
D.
Li
,
B.
Liu
,
J.
Zou
, and
K.
Xu
, “
Improvement of osseointegration of titanium dental implants by a modified sandblasting surface treatment: An in vivo interfacial biomechanics study
,”
Implant Dent.
8
(
3
),
289
294
(
1999
).
14.
M.
Shalabi
,
A.
Gortemaker
,
M. A.
Van't Hof
,
J.
Jansen
, and
N.
Creugers
, “
Implant surface roughness and bone healing: A systematic review
,”
J. Dent. Res.
85
(
6
),
496
500
(
2006
).
15.
J. D.
Boyd
,
N.
Korotkova
, and
M. E.
Grady
, “
Adhesion of biofilms on titanium measured by laser-induced spallation
,”
Exp. Mech.
59
(
9
),
1275
1284
(
2019
).
16.
D.
Devaux
,
R.
Fabbro
, and
J.
Virmont
, “
Generation of shock waves by laser-matter interaction in confined geometries
,”
J. Phys. IV
1
(
C7
),
C7-179
C7-182
(
1991
).
17.
M. E.
Grady
,
P. H.
Geubelle
,
P. V.
Braun
, and
N. R.
Sottos
, “
Molecular tailoring of interfacial failure
,”
Langmuir
30
(
37
),
11096
11102
(
2014
).
18.
S. S.
Kandula
,
P.
Tran
,
P. H.
Geubelle
, and
N. R.
Sottos
, “
Dynamic delamination of patterned thin films
,”
Appl. Phys. Lett.
93
(
26
),
261902
(
2008
).
19.
L.
Lev
and
A.
Argon
, “
Spallation of thin elastic coatings from elastic substrates by laser induced pressure pulses
,”
J. Appl. Phys.
80
(
1
),
529
542
(
1996
).
20.
A.
Kobayashi
,
A.
Jain
,
V.
Gupta
, and
V.
Kireev
, “
Study on the interface strength of zirconia coatings by a laser spallation technique
,”
Vacuum
73
(
3–4
),
533
539
(
2004
).
21.
V.
Gupta
,
A. S.
Argon
,
J. A.
Cornie
, and
D. M.
Parks
, “
Measurement of interface strength by laser-pulse-induced spallation
,”
Mater. Sci. Eng., A
126
(
1–2
),
105
117
(
1990
).
22.
B.
Blaiszik
,
K.
Chard
,
J.
Pruyne
,
R.
Ananthakrishnan
,
S.
Tuecke
, and
I.
Foster
, “
The materials data facility: Data services to advance materials science research
,”
JOM
68
(
8
),
2045
2052
(
2016
).
23.
B.
Blaiszik
,
L.
Ward
,
M.
Schwarting
,
J.
Gaff
,
R.
Chard
,
D.
Pike
,
K.
Chard
, and
I.
Foster
, “
A data ecosystem to support machine learning in materials science
,”
MRS Commun.
9
(
4
),
1125
1133
(
2019
).
You do not currently have access to this content.