Low-threshold lasing under pulsed optical pumping is demonstrated at room temperature for III-nitride microdisks with InGaN/GaN quantum wells on Si in the blue spectral range. Thresholds in the range of 18kW/cm2 have been achieved along with narrow linewidths of 0.07 nm and a large peak-to-background dynamic of 300. We compare this threshold range with the one that can be calculated using a rate equation model. We show that thresholds in the few kW/cm2 range constitute the best that can be achieved with III-nitride quantum wells at room temperature. The sensitivity of lasing on the fabrication process is also discussed.

1.
S. L.
McCall
,
A. F. J.
Levi
,
R. E.
Slusher
,
S. J.
Pearton
, and
R. A.
Logan
, “
Whispering-gallery mode microdisk lasers
,”
Appl. Phys. Lett.
60
,
289
291
(
1992
).
2.
M. S.
Islim
,
R. X.
Ferreira
,
X.
He
,
E.
Xie
,
S.
Videv
,
S.
Viola
,
S.
Watson
,
N.
Bamiedakis
,
R. V.
Penty
,
I. H.
White
,
A. E.
Kelly
,
E.
Gu
,
H.
Haas
, and
M. D.
Dawson
, “
Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED
,”
Photonics Res.
5
,
A35
A43
(
2017
).
3.
M. C.
Estevez
,
M.
Alvarez
, and
L. M.
Lechuga
, “
Integrated optical devices for lab-on-a-chip biosensing applications
,”
Laser Photonics Rev.
6
,
463
487
(
2012
).
4.
R.
Butté
and
N.
Grandjean
, “
III-nitride photonic cavities
,”
Nanophotonics
9
,
569
598
(
2020
).
5.
E. D.
Haberer
,
R.
Sharma
,
C.
Meier
,
A. R.
Stonas
,
S.
Nakamura
,
S. P.
DenBaars
, and
E. L.
Hu
, “
Free-standing, optically pumped, GaN/InGaN microdisk lasers fabricated by photoelectrochemical etching
,”
Appl. Phys. Lett.
85
,
5179
5181
(
2004
).
6.
D.
Simeonov
,
E.
Feltin
,
H.-J.
Bühlmann
,
T.
Zhu
,
A.
Castiglia
,
M.
Mosca
,
J.-F.
Carlin
,
R.
Butté
, and
N.
Grandjean
, “
Blue lasing at room temperature in high quality factor GaN/AlInN microdisks with InGaN quantum wells
,”
Appl. Phys. Lett.
90
,
061106
(
2007
).
7.
D.
Simeonov
,
E.
Feltin
,
A.
Altoukhov
,
A.
Castiglia
,
J.-F.
Carlin
,
R.
Butté
, and
N.
Grandjean
, “
High quality nitride based microdisks obtained via selective wet etching of AlInN sacrificial layers
,”
Appl. Phys. Lett.
92
,
171102
(
2008
).
8.
I.
Aharonovich
,
A.
Woolf
,
K. J.
Russell
,
T.
Zhu
,
N.
Niu
,
M. J.
Kappers
,
R. A.
Oliver
, and
E. L.
Hu
, “
Low threshold, room-temperature microdisk lasers in the blue spectral range
,”
Appl. Phys. Lett.
103
,
021112
(
2013
).
9.
J.
Sellés
,
C.
Brimont
,
G.
Cassabois
,
P.
Valvin
,
T.
Guillet
,
I.
Roland
,
Y.
Zeng
,
X.
Checoury
,
P.
Boucaud
,
M.
Mexis
,
F.
Semond
, and
B.
Gayral
, “
Deep-UV nitride-on-silicon microdisk lasers
,”
Sci. Rep.
6
,
21650
(
2016
).
10.
J.
Sellés
,
V.
Crepel
,
I.
Roland
,
M.
ElKurdi
,
X.
Checoury
,
P.
Boucaud
,
M.
Mexis
,
M.
Leroux
,
B.
Damilano
,
S.
Rennesson
,
F.
Semond
,
B.
Gayral
,
C.
Brimont
, and
T.
Guillet
, “
III-nitride-on-silicon microdisk lasers from the blue to the deep ultra-violet
,”
Appl. Phys. Lett.
109
,
231101
(
2016
).
11.
G.
Zhu
,
J.
Li
,
N.
Zhang
,
X.
Li
,
J.
Dai
,
Q.
Cui
,
Q.
Song
,
C.
Xu
, and
Y.
Wang
, “
Whispering-gallery mode lasing in a floating GaN microdisk with a vertical slit
,”
Sci. Rep.
10
,
253
(
2020
).
12.
A. C.
Tamboli
,
E. D.
Haberer
,
R.
Sharma
,
K. H.
Lee
,
S.
Nakamura
, and
E. L.
Hu
, “
Room-temperature continuous-wave lasing in GaN/InGaN microdisks
,”
Nat. Photonics
1
,
61
64
(
2007
).
13.
M.
Athanasiou
,
R.
Smith
,
B.
Liu
, and
T.
Wang
, “
Room temperature continuous-wave green lasing from an InGaN microdisk on silicon
,”
Sci. Rep.
4
,
7250
(
2014
).
14.
M.
Athanasiou
,
R. M.
Smith
,
J.
Pugh
,
Y.
Gong
,
M. J.
Cryan
, and
T.
Wang
, “
Monolithically multi-color lasing from an InGaN microdisk on a Si substrate
,”
Sci. Rep.
7
,
10086
(
2017
).
15.
M.
Mexis
,
S.
Sergent
,
T.
Guillet
,
C.
Brimont
,
T.
Bretagnon
,
B.
Gil
,
F.
Semond
,
M.
Leroux
,
D.
Néel
,
S.
David
,
X.
Checoury
, and
P.
Boucaud
, “
High quality factor nitride-based optical cavities: Microdisks with embedded GaN/Al(Ga)N quantum dots
,”
Opt. Lett.
36
,
2203
2205
(
2011
).
16.
I.
Rousseau
,
G.
Callsen
,
G.
Jacopin
,
J.-F.
Carlin
,
R.
Butté
, and
N.
Grandjean
, “
Optical absorption and oxygen passivation of surface states in III-nitride photonic devices
,”
J. Appl. Phys.
123
,
113103
(
2018
).
17.
M.
Kneissl
,
M.
Teepe
,
N.
Miyashita
,
N. M.
Johnson
,
G. D.
Chern
, and
R. K.
Chang
, “
Current-injection spiral-shaped microcavity disk laser diodes with unidirectional emission
,”
Appl. Phys. Lett.
84
,
2485
2487
(
2004
).
18.
M.
Feng
,
J.
He
,
Q.
Sun
,
H.
Gao
,
Z.
Li
,
Y.
Zhou
,
J.
Liu
,
S.
Zhang
,
D.
Li
,
L.
Zhang
,
X.
Sun
,
D.
Li
,
H.
Wang
,
M.
Ikeda
,
R.
Wang
, and
H.
Yang
, “
Room-temperature electrically pumped InGaN based microdisk laser grown on Si
,”
Opt. Express
26
,
5043
5051
(
2018
).
19.
J.
Wang
,
M.
Feng
,
R.
Zhou
,
Q.
Sun
,
J.
Liu
,
Y.
Huang
,
Y.
Zhou
,
H.
Gao
,
X.
Zheng
,
M.
Ikeda
, and
H.
Yang
, “
GaN-based ultraviolet microdisk laser diode grown on Si
,”
Photonics Res.
7
,
B32
B35
(
2019
).
20.
J.
Wang
,
M.
Feng
,
R.
Zhou
,
Q.
Sun
,
J.
Liu
,
X.
Sun
,
X.
Zheng
,
M.
Ikeda
,
X.
Sheng
, and
H.
Yang
, “
Continuous-wave electrically injected GaN-on-Si microdisk laser diodes
,”
Opt. Express
28
,
12201
12208
(
2020
).
21.
F.
Tabataba-Vakili
,
L.
Doyennette
,
C.
Brimont
,
T.
Guillet
,
S.
Rennesson
,
E.
Frayssinet
,
B.
Damilano
,
J.-Y.
Duboz
,
F.
Semond
,
I.
Roland
,
M.
ElKurdi
,
X.
Checoury
,
S.
Sauvage
,
B.
Gayral
, and
P.
Boucaud
, “
Blue microlasers integrated on a photonic platform on silicon
,”
ACS Photonics
5
,
3643
3648
(
2018
).
22.
F.
Tabataba-Vakili
,
L.
Doyennette
,
C.
Brimont
,
T.
Guillet
,
S.
Rennesson
,
B.
Damilano
,
E.
Frayssinet
,
J.-Y.
Duboz
,
X.
Checoury
,
S.
Sauvage
,
M.
ElKurdi
,
F.
Semond
,
B.
Gayral
, and
P.
Boucaud
, “
Demonstration of critical coupling in an active III-nitride microdisk photonic circuit on silicon
,”
Sci. Rep.
9
,
18095
(
2019
).
23.
F.
Tabataba-Vakili
,
B.
Alloing
,
B.
Damilano
,
H.
Souissi
,
C.
Brimont
,
L.
Doyennette
,
T.
Guillet
,
X.
Checoury
,
M. E.
Kurdi
,
S.
Chenot
,
E.
Frayssinet
,
J.-Y.
Duboz
,
F.
Semond
,
B.
Gayral
, and
P.
Boucaud
, “
Monolithic integration of ultraviolet microdisk lasers into photonic circuits in a III-nitride-on-silicon platform
,”
Opt. Lett.
45
,
4276
4279
(
2020
).
24.
F.
Tabataba-Vakili
,
S.
Rennesson
,
B.
Damilano
,
E.
Frayssinet
,
J.-Y.
Duboz
,
F.
Semond
,
I.
Roland
,
B.
Paulillo
,
R.
Colombelli
,
M.
ElKurdi
,
X.
Checoury
,
S.
Sauvage
,
L.
Doyennette
,
C.
Brimont
,
T.
Guillet
,
B.
Gayral
, and
P.
Boucaud
, “
III-nitride on silicon electrically injected microrings for nanophotonic circuits
,”
Opt. Express
27
,
11800
11808
(
2019
).
25.
T.
Baba
and
D.
Sano
, “
Low-threshold lasing and Purcell effect in microdisk lasers at room temperature
,”
IEEE J. Sel. Top. Quantum Electron.
9
,
1340
1346
(
2003
).
26.
N.
Vico Triviño
,
R.
Butté
,
J.-F.
Carlin
, and
N.
Grandjean
, “
Continuous wave blue lasing in III-nitride nanobeam cavity on silicon
,”
Nano Lett.
15
,
1259
1263
(
2015
).
27.
W.
Chow
,
A.
Wright
, and
J.
Nelson
, “
Theoretical study of room temperature optical gain in GaN strained quantum wells
,”
Appl. Phys. Lett.
68
,
296
298
(
1996
).
28.
A.
Hangleiter
,
G.
Frankowsky
,
V.
Härle
, and
F.
Scholz
, “
Optical gain in the nitrides: Are there differences to other III–V semiconductors?
,”
Mater. Sci. Eng., B
43
,
201
206
(
1997
).
29.
L. A.
Coldren
,
S. W.
Corzine
, and
M. L.
Masanovic
,
Diode Lasers and Photonic Integrated Circuits
(
John Wiley & Sons
,
Hoboken
,
New Jersey
,
2012
), Vol.
218
.
30.
T.
Baba
, “
Photonic crystals and microdisk cavities based on GaInAsP-InP system
,”
IEEE J. Sel. Top. Quantum Electron.
3
,
808
830
(
1997
).
31.
M.
Van Exter
,
G.
Nienhuis
, and
J.
Woerdman
, “
Two simple expressions for the spontaneous emission factor β
,”
Phys. Rev. A
54
,
3553
3558
(
1996
).
32.
H.
Morkoç
,
Handbook of Nitride Semiconductors and Devices: GaN-Based Optical and Electronic Devices
(
Wiley-VCH
,
Weinheim
,
2009
).
33.
T.
Kawashima
,
H.
Yoshikawa
,
S.
Adachi
,
S.
Fuke
, and
K.
Ohtsuka
, “
Optical properties of hexagonal GaN
,”
J. Appl. Phys.
82
,
3528
3535
(
1997
).
34.
W.
Scheibenzuber
,
U.
Schwarz
,
L.
Sulmoni
,
J.
Dorsaz
,
J.-F.
Carlin
, and
N.
Grandjean
, “
Recombination coefficients of GaN-based laser diodes
,”
J. Appl. Phys.
109
,
093106
(
2011
).
35.
A. C.
Espenlaub
,
D. J.
Myers
,
E. C.
Young
,
S.
Marcinkevičius
,
C.
Weisbuch
, and
J. S.
Speck
, “
Evidence of trap-assisted Auger recombination in low radiative efficiency MBE-grown III-nitride LEDs
,”
J. Appl. Phys.
126
,
184502
(
2019
).
36.
T.
Kozaki
,
H.
Matsumura
,
Y.
Sugimoto
,
S.-I.
Nagahama
, and
T.
Mukai
, “
High-power and wide wavelength range GaN-based laser diodes
,”
Proc. SPIE
6133
,
613306
(
2006
).
37.
M.
Martens
, “
Optical gain and modal loss in AlGaN based deep UV lasers
,” Ph.D. thesis (
Technische Universität Berlin
,
2018
).
38.
E.
Rosencher
and
B.
Vinter
,
Optoelectronics
(
Cambridge University Press
,
Cambridge
,
2004
).
39.
J.
Piprek
, “
Efficiency droop in nitride-based light-emitting diodes
,”
Phys. Status Solidi A
207
,
2217
2225
(
2010
).
40.
S.
Karpov
, “
ABC-model for interpretation of internal quantum efficiency and its droop in III-nitride LEDs: A review
,”
Opt. Quantum Electron.
47
,
1293
1303
(
2015
).
41.
A.
David
,
N. G.
Young
,
C.
Lund
, and
M. D.
Craven
, “
The physics of recombinations in III-nitride emitters
,”
ECS J. Solid State Sci. Technol.
9
,
016021
(
2020
).
42.
Y.
Arakawa
and
H.
Sakaki
, “
Multidimensional quantum well laser and temperature dependence of its threshold current
,”
Appl. Phys. Lett.
40
,
939
941
(
1982
).

Supplementary Material

You do not currently have access to this content.