A complex quantum dot circuit based on a clean and suspended carbon nanotube embedded in a circuit quantum electrodynamic (cQED) architecture is a very attractive platform to investigate a large spectrum of physics phenomena ranging from qubit physics to nanomechanics. We demonstrate a carbon nanotube transfer process allowing us to integrate clean carbon nanotubes into complex quantum dot circuits inside a cQED platform. This technique is compatible with various contacting materials such as superconductors or ferromagnets. This makes it suitable for hybrid quantum devices. Our results are based on eight different devices demonstrating the robustness of this technique.

1.
J.
Waissman
,
M.
Honig
,
S.
Pecker
,
A.
Benyamini
,
A.
Hamo
, and
S.
Ilani
, “
Realization of pristine and locally tunable one-dimensional electron systems in carbon nanotubes
,”
Nat. Nanotechnol.
8
,
569
574
(
2013
).
2.
T.
Sharf
,
J. W.
Kevek
,
T.
DeBorde
,
J. L.
Wardini
, and
E. D.
Minot
, “
Origins of charge noise in carbon nanotube field-effect transistor biosensors
,”
Nano Lett.
12
,
6380
6384
(
2012
).
3.
V.
Sazonova
,
Y.
Yaish
,
H.
Üstünel
,
D.
Roundy
,
T. A.
Arias
, and
P. L.
McEuen
, “
A tunable carbon nanotube electromechanical oscillator
,”
Nature
431
,
284
287
(
2004
).
4.
B.
Witkamp
,
M.
Poot
, and
H. S. J.
van der Zant
, “
Bending-mode vibration of a suspended nanotube resonator
,”
Nano Lett.
6
,
2904
2908
(
2006
).
5.
B.
Lassagne
,
D.
Garcia-Sanchez
,
A.
Aguasca
, and
A.
Bachtold
, “
Ultrasensitive mass sensing with a nanotube electromechanical resonator
,”
Nano Lett.
8
,
3735
3738
(
2008
).
6.
A.
Cottet
and
T.
Kontos
, “
Spin quantum bit with ferromagnetic contacts for circuit QED
,”
Phys. Rev. Lett.
105
,
160502
(
2010
).
7.
A.
Cottet
,
M. C.
Dartiailh
,
M. M.
Desjardins
,
T.
Cubaynes
,
L. C.
Contamin
,
M.
Delbecq
,
J. J.
Viennot
,
L. E.
Bruhat
,
B.
Douçot
, and
T.
Kontos
, “
Cavity QED with hybrid nanocircuits: From atomic-like physics to condensed matter phenomena
,”
J. Phys.: Condens. Matter
29
,
433002
(
2017
).
8.
C. C.
Wu
,
C. H.
Liu
, and
Z.
Zhong
, “
One-step direct transfer of pristine single-walled carbon nanotubes for functional nanoelectronics
,”
Nano Lett.
10
,
1032
1036
(
2010
).
9.
M.
Muoth
and
C.
Hierold
, “
Transfer of carbon nanotubes onto microactuators for hysteresis-free transistors at low thermal budget
,” in
IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS)
(
IEEE
,
2012
), pp.
1352
1355
.
10.
F.
Pei
,
E. A.
Laird
,
G. A.
Steele
, and
L. P.
Kouwenhoven
, “
Valley-spin blockade and spin resonance in carbon nanotubes
,”
Nat. Nanotechnol.
7
,
630
634
(
2012
).
11.
V.
Ranjan
,
G.
Puebla-Hellmann
,
M.
Jung
,
T.
Hasler
,
A.
Nunnenkamp
,
M.
Muoth
,
C.
Hierold
,
A.
Wallraff
, and
C.
Schönenberger
, “
Clean carbon nanotubes coupled to superconducting impedance-matching circuits
,”
Nat. Commun.
6
,
7165
(
2015
).
12.
S.
Blien
,
P.
Steger
,
A.
Albang
,
N.
Paradiso
, and
A. K.
Hüttel
, “
Quartz tuning-fork based carbon nanotube transfer into quantum device geometries
,”
Phys. Status Solidi B
255
,
1800118
(
2018
).
13.
S.
Blien
,
P.
Steger
,
N.
Hüttner
,
R.
Graaf
, and
A. K.
Hüttel
, “
Quantum capacitance mediated carbon nanotube optomechanics
,”
Nat. Commun.
11
,
1636
(
2020
).
14.
I.
Shapir
,
A.
Hamo
,
S.
Pecker
,
C. P.
Moca
,
Ö.
Legeza
,
G.
Zarand
, and
S.
Ilani
, “
Imaging the electronic Wigner crystal in one dimension
,”
Science
364
,
870
875
(
2019
).
15.
A.
Benyamini
,
A.
Hamo
,
S. V.
Kusminskiy
,
F.
von Oppen
, and
S.
Ilani
, “
Real-space tailoring of the electron-phonon coupling in ultraclean nanotube mechanical resonators
,”
Nat. Phys.
10
,
151
156
(
2014
).
16.
I.
Khivrich
,
A. A.
Clerk
, and
S.
Ilani
, “
Nanomechanical pump-probe measurements of insulating electronic states in a carbon nanotube
,”
Nat. Nanotechnol.
14
,
161
167
(
2019
).
17.
Y.
Wen
,
N.
Ares
,
F. J.
Schupp
,
T.
Pei
,
G. A. D.
Briggs
, and
E. A.
Laird
, “
A coherent nanomechanical oscillator driven by single-electron tunnelling
,”
Nat. Phys.
16
,
75
82
(
2020
).
18.
J. J.
Viennot
,
J.
Palomo
, and
T.
Kontos
, “
Stamping single wall nanotubes for circuit quantum electrodynamics
,”
Appl. Phys. Lett.
104
,
113108
(
2014
).
19.
J. H.
Choi
,
J.
Lee
,
S. M.
Moon
,
Y.-T.
Kim
,
H.
Park
, and
C. Y.
Lee
, “
A low-energy electron beam does not damage single-walled carbon nanotubes and graphene
,”
J. Phys. Chem. Lett.
7
,
4739
4743
(
2016
).
20.
W. K.
Wong
,
A.
Nojeh
, and
R. F. W.
Pease
, “
Parameters and mechanisms governing image contrast in scanning electron microscopy of single-walled carbon nanotubes
,”
Scanning
28
,
219
227
(
2006
).
21.
J. J.
Viennot
,
M. C.
Dartiailh
,
A.
Cottet
, and
T.
Kontos
, “
Coherent coupling of a single spin to microwave cavity photons
,”
Science
349
,
408
411
(
2015
).
22.
P. G.
Collins
, “
Engineering carbon nanotubes and nanotube circuits using electrical breakdown
,”
Science
292
,
706
709
(
2001
).
23.
T.
Cubaynes
,
M. R.
Delbecq
,
M. C.
Dartiailh
,
R.
Assouly
,
M. M.
Desjardins
,
L. C.
Contamin
,
L. E.
Bruhat
,
Z.
Leghtas
,
F.
Mallet
,
A.
Cottet
, and
T.
Kontos
, “
Highly coherent spin states in carbon nanotubes coupled to cavity photons
,”
npj Quantum Inf.
5
,
47
(
2019
).
24.
L. E.
Bruhat
,
J. J.
Viennot
,
M. C.
Dartiailh
,
M. M.
Desjardins
,
T.
Kontos
, and
A.
Cottet
, “
Cavity photons as a probe for charge relaxation resistance and photon emission in a quantum dot coupled to normal and superconducting continua
,”
Phys. Rev. X
6
,
021014
(
2016
).
25.
M.
Mergenthaler
,
A.
Nersisyan
,
A.
Patterson
,
M.
Esposito
,
A.
Baumgartner
,
C.
Schönenberger
,
G. A. D.
Briggs
,
E. A.
Laird
, and
P. J.
Leek
, “
Realization of a carbon-nanotube-based superconducting qubit
,” preprint arXiv:1904.10132 (
2019
).
26.
M. M.
Desjardins
,
L. C.
Contamin
,
M. R.
Delbecq
,
M. C.
Dartiailh
,
L. E.
Bruhat
,
T.
Cubaynes
,
J. J.
Viennot
,
F.
Mallet
,
S.
Rohart
,
A.
Thiaville
,
A.
Cottet
, and
T.
Kontos
, “
Synthetic spin-orbit interaction for Majorana devices
,”
Nat. Mater.
18
,
1060
1064
(
2019
).
27.
K. E.
Khosla
,
M. R.
Vanner
,
N.
Ares
, and
E. A.
Laird
, “
Displacemon electromechanics: How to detect quantum interference in a nanomechanical resonator
,”
Phys. Rev. X
8
,
021052
(
2018
).
28.
W.
Qin
,
A.
Miranowicz
,
G.
Long
,
J. Q.
You
, and
F.
Nori
, “
Proposal to test quantum wave-particle superposition on massive mechanical resonators
,”
npj Quantum Inf.
5
,
58
(
2019
).
29.
P.
Stadler
,
W.
Belzig
, and
G.
Rastelli
, “
Ground-state cooling of a mechanical oscillator by interference in Andreev reflection
,”
Phys. Rev. Lett.
117
,
197202
(
2016
).
30.
O.
Lesser
,
G.
Shavit
, and
Y.
Oreg
, “
Topological superconductivity in carbon nanotubes with a small magnetic flux
,”
Phys. Rev. Res.
2
,
023254
(
2020
).

Supplementary Material

You do not currently have access to this content.