Ultrasonic phased-array (PA) systems have been widely adopted in the field of nondestructive evaluation for material characterization and imaging of internal defects. Whereas many defects exhibit complex three-dimensional structures, most PA systems provide only two-dimensional images. In this Letter, we demonstrate the ability to create high-resolution 3D images of internal defects using a PA system based on a piezoelectric and laser ultrasonic system (PLUS). The PLUS combines a piezoelectric transmitter to insonify the structure to be inspected with a laser Doppler vibrometer to create a matrix array of receiver points without contact. The small size of the laser beam results in an ultra-multiple number of elements on the order of thousands, which is impossible to achieve with a conventional piezoelectric matrix array transducer. An emission from a piezoelectric transmitter compensates for the intrinsically low sensitivity of a laser Doppler vibrometer. After formulating the 3D imaging algorithm of the PLUS, we demonstrate that the PLUS with 4096 receiving points (i.e., 64 × 64 points) achieves high-resolution 3D imaging in a specimen with a flat bottom hole. We also visualize the complex structure of stress corrosion cracking. We believe that the 3D imaging capability of the PLUS may open up new avenues to the accurate evaluation of material strength, the identification of the types of defects, and the elucidation of the mechanisms of defect initiation.

1.
C.
Holmes
,
B. W.
Drinkwater
, and
P. D.
Wilcox
,
NDT&E Int.
38
,
701
(
2005
).
2.
B. W.
Drinkwater
and
P. D.
Wilcox
,
NDT&E Int.
39
,
525
(
2006
).
3.
L. W.
Schmerr
,
Fundamentals of Ultrasonic Phased Arrays
(
Springer International Publishing
,
Cham
,
2015
).
4.
T. L.
Szabo
,
Diagnostic Ultrasound Imaging: Inside out
, 2nd ed. (
Academic Press
,
Oxford
,
2004
).
5.
S.
Wooh
and
Y.
Shi
,
Ultrasonics
36
,
737
(
1998
).
6.
L.
Azar
,
Y.
Shi
, and
S. C.
Wooh
,
NDT&E Int.
33
,
189
(
2000
).
7.
J.
Provost
,
C.
Papadacci
,
J. E.
Arango
,
M.
Imbault
,
M.
Fink
,
J. L.
Gennisson
,
M.
Tanter
, and
M.
Pernot
,
Phys. Med. Biol.
59
,
L1
(
2014
).
8.
C.
Rabut
,
M.
Correia
,
V.
Finel
,
S.
Pezet
,
M.
Pernot
,
T.
Deffieux
, and
M.
Tanter
,
Nat. Methods
16
,
994
(
2019
).
9.
Y.
Ohara
,
T.
Mihara
,
R.
Sasaki
,
T.
Ogata
,
S.
Yamamoto
,
Y.
Kishimoto
, and
K.
Yamanaka
,
Appl. Phys. Lett.
90
,
011902
(
2007
).
10.
Y.
Ohara
,
H.
Endo
,
T.
Mihara
, and
K.
Yamanaka
,
Jpn. J. Appl. Phys., Part 1
48
,
07GD01
(
2009
).
11.
Y.
Ohara
,
J.
Potter
,
H.
Nakajima
,
T.
Tsuji
, and
T.
Mihara
,
Jpn. J. Appl. Phys., Part 1
58
,
SGGB06
(
2019
).
12.
Y.
Ohara
,
T.
Mihara
, and
K.
Yamanaka
,
Nonlinear Ultrasonic Vibro-Acoustical Techniques Nondestructive Evaluation
(
Springer
,
2019
), pp.
419
469
.
13.
K.-Y.
Jhang
,
C. J.
Lissenden
,
I.
Solodov
,
Y.
Ohara
, and
V.
Gusev
,
Measurement of Nonlinear Ultrasonic Characteristics
(
Springer
,
Singapore
,
2020
).
14.
S.
Yamamoto
,
Y.
Ohara
,
T.
Mihara
, and
K.
Yamanaka
,
J. JSNDI
57
,
198
(
2008
).
15.
C. S.
Park
,
J. W.
Kim
,
S.
Cho
, and
D. C.
Seo
,
NDT&E Int.
79
,
114
(
2016
).
16.
A.
Blouin
,
D.
Levesque
,
C.
Neron
,
D.
Drolet
, and
J.-P.
Monchalin
,
Opt. Express
2
,
531
(
1998
).
17.
D.
Lévesque
,
A.
Blouin
,
C.
Néron
, and
J. P.
Monchalin
,
Ultrasonics
40
,
1057
(
2002
).
18.
S.
Yamamoto
,
T.
Hoshi
,
T.
Miura
,
J.
Semboshi
,
M.
Ochiai
,
Y.
Fujita
,
T.
Ogawa
, and
S.
Asai
,
Mater. Trans.
55
,
998
(
2014
).
19.
D.
Lévesque
,
Y.
Asaumi
,
M.
Lord
,
C.
Bescond
,
H.
Hatanaka
,
M.
Tagami
, and
J. P.
Monchalin
,
Ultrasonics
69
,
236
(
2016
).
20.
Y.
Ohara
,
S.
Yamamoto
,
T.
Mihara
, and
K.
Yamanaka
,
Jpn. J. Appl. Phys., Part 1
47
,
3908
(
2008
).
21.
P.
Shokouhi
,
J.
Wolf
, and
H.
Wiggenhauser
,
J. Bridge Eng.
19
,
1
(
2014
).
22.
N.
Pörtzgen
,
D.
Gisolf
, and
G.
Blacquière
,
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
54
,
118
(
2007
).
23.
N.
Pörtzgen
,
D.
Gisolf
, and
D. J.
Verschuur
,
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
55
,
1768
(
2008
).
24.
L.
Le Jeune
,
S.
Robert
,
E. L.
Villaverde
, and
C.
Prada
,
Ultrasonics
64
,
128
(
2016
).
25.
S.
Beniwal
,
D.
Ghosh
, and
A.
Ganguli
,
NDT&E Int.
82
,
26
(
2016
).
26.
S.
Hamidi
and
S.
ShahbazPanahi
,
IEEE Trans. Signal Process.
64
,
1352
(
2016
).
27.
J.
Zhang
,
B. W.
Drinkwater
,
P. D.
Wilcox
, and
A. J.
Hunter
,
NDT&E Int.
43
,
123
(
2010
).
28.
M. V.
Felice
,
A.
Velichko
, and
P. D.
Wilcox
,
NDT&E Int.
68
,
105
(
2014
).
29.
K.
Sy
,
P.
Brédif
,
E.
Iakovleva
,
O.
Roy
, and
D.
Lesselier
,
NDT&E Int.
99
,
134
(
2018
).
30.
J.
Camacho
,
D.
Atehortua
,
J. F.
Cruza
,
J.
Brizuela
, and
J.
Ealo
,
NDT&E Int.
93
,
164
(
2018
).
31.
N.
Budyn
,
R. L. T.
Bevan
,
J.
Zhang
,
A. J.
Croxford
, and
P. D.
Wilcox
,
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
66
,
1129
(
2019
).
32.
C.
Prada
,
S.
Manneville
,
D.
Spoliansky
, and
M.
Fink
,
J. Acoust. Soc. Am.
99
,
2067
(
1996
).
33.
C.
Prada
and
J.-L.
Thomas
,
J. Acoust. Soc. Am.
114
,
235
(
2003
).
34.
E. A.
Marengo
,
F. K.
Gruber
, and
F.
Simonetti
,
IEEE Trans. Image Process.
16
,
1967
(
2007
).
35.
36.
R.
Seidl
and
E.
Rank
,
Comput. Math Appl.
72
,
879
(
2016
).
37.
F.
Simonetti
,
Phys. Rev. E
73
,
036619
(
2006
).
38.
C.
Fan
,
M.
Pan
,
F.
Luo
, and
B.
Drinkwater
,
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
61
,
2067
(
2014
).
39.
L. A.
Brooks
and
P.
Gerstoft
,
J. Acoust. Soc. Am.
121
,
3377
(
2007
).
40.
V.
Matz
,
R.
Smid
,
S.
Starman
, and
M.
Kreidl
,
Ultrasonics
49
,
752
(
2009
).
41.
G. K.
Sharma
,
A.
Kumar
,
T.
Jayakumar
,
B. P.
Rao
, and
N.
Mariyappa
,
Ultrasonics
57
,
167
(
2015
).
42.
Y.
Ohara
,
K.
Takahashi
,
Y.
Ino
,
K.
Yamanaka
,
T.
Tsuji
, and
T.
Mihara
,
NDT&E Int.
91
,
139
(
2017
).
43.
L.
Merabet
,
S.
Robert
, and
C.
Prada
,
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
66
,
772
(
2019
).
44.
L.
Merabet
,
S.
Robert
, and
C.
Prada
,
NDT&E Int.
110
,
102171
(
2020
).
45.
T.
Mihara
,
T.
Hamajima
,
H.
Tashiro
, and
A.
Sato
,
AIP Conf. Proc.
1511
,
1617
(
2013
).
46.
T.
Mihara
,
G.
Konishi
,
Y.
Miura
, and
H.
Ishida
,
AIP Conf. Proc.
1581
,
727
(
2014
).
You do not currently have access to this content.