Power electronics seek to improve power conversion of devices by utilizing materials with a wide bandgap, high carrier mobility, and high thermal conductivity. Due to its wide bandgap of 4.5 eV, β-Ga2O3 has received much attention for high-voltage electronic device research. However, it suffers from inefficient thermal conduction that originates from its low-symmetry crystal structure. Rutile germanium oxide (r-GeO2) has been identified as an alternative ultra-wide-bandgap (4.68 eV) semiconductor with a predicted high electron mobility and ambipolar dopability; however, its thermal conductivity is unknown. Here, we characterize the thermal conductivity of r-GeO2 as a function of temperature by first-principles calculations, experimental synthesis, and thermal characterization. The calculations predict an anisotropic phonon-limited thermal conductivity for r-GeO2 of 37 W m−1 K−1 along the a direction and 58 W m−1 K−1 along the c direction at 300 K where the phonon-limited thermal conductivity predominantly occurs via the acoustic modes. Experimentally, we measured a value of 51 W m−1 K−1 at 300 K for hot-pressed, polycrystalline r-GeO2 pellets. The measured value is close to our directionally averaged theoretical value, and the temperature dependence of ∼1/T is also consistent with our theory prediction, indicating that thermal transport in our r-GeO2 samples at room temperature and above is governed by phonon scattering. Our results reveal that high-symmetry UWBG materials, such as r-GeO2, may be the key to efficient power electronics.

1.
J. Y.
Tsao
,
S.
Chowdhury
,
M. A.
Hollis
,
D.
Jena
,
N. M.
Johnson
,
K. A.
Jones
,
R. J.
Kaplar
,
S.
Rajan
,
C. G.
Van de Walle
,
E.
Bellotti
,
C. L.
Chua
,
R.
Collazo
,
M. E.
Coltrin
,
J. A.
Cooper
,
K. R.
Evans
,
S.
Graham
,
T. A.
Grotjohn
,
E. R.
Heller
,
M.
Higashiwaki
,
M. S.
Islam
,
P. W.
Juodawlkis
,
M. A.
Khan
,
A. D.
Koehler
,
J. H.
Leach
,
U. K.
Mishra
,
R. J.
Nemanich
,
R. C. N.
Pilawa-Podgurski
,
J. B.
Shealy
,
Z.
Sitar
,
M. J.
Tadjer
,
A. F.
Witulski
,
M.
Wraback
, and
J. A.
Simmons
,
Adv. Electron. Mater.
4
,
1600501
(
2018
).
2.
Z.
Guo
,
A.
Verma
,
X.
Wu
,
F.
Sun
,
A.
Hickman
,
T.
Masui
,
A.
Kuramata
,
M.
Higashiwaki
,
D.
Jena
, and
T.
Luo
,
Appl. Phys. Lett.
106
,
111909
(
2015
).
3.
L.
Boteler
,
A.
Lelis
,
M.
Berman
, and
M.
Fish
, in
IEEE 7th Workshop on Wide Bandgap Power Devices Applications
(
2019
), p.
265
.
4.
M.
Stapelbroek
and
B. D.
Evans
,
Solid State Commun.
25
,
959
(
1978
).
5.
K. A.
Mengle
,
S.
Chae
, and
E.
Kioupakis
,
J. Appl. Phys.
126
,
085703
(
2019
).
6.
S.
Chae
,
J.
Lee
,
K. A.
Mengle
,
J. T.
Heron
, and
E.
Kioupakis
,
Appl. Phys. Lett.
114
(
5
),
102104
(
2019
).
7.
K. A.
Mengle
and
E.
Kioupakis
, arXiv:1911.09750 (n.d.).
8.
P.
Türkes
,
C.
Pluntke
, and
R.
Helbig
,
J. Phys. C
13
,
4941
(
1980
).
9.
J.
Carrete
,
B.
Vermeersch
,
A.
Katre
,
A.
van Roekeghem
,
T.
Wang
,
G. K. H.
Madsen
, and
N.
Mingo
,
Comput. Phys. Commun.
220
,
351
(
2017
).
10.
P.
Giannozzi
,
S.
Baroni
,
N.
Bonini
,
M.
Calandra
,
R.
Car
,
C.
Cavazzoni
,
D.
Ceresoli
,
G. L.
Chiarotti
,
M.
Cococcioni
,
I.
Dabo
,
A. D.
Corso
,
S.
De Gironcoli
,
U.
Gerstmann
,
C.
Gougoussis
,
A.
Kokalj
,
M.
Lazzeri
,
L.
Martin-samos
,
N.
Marzari
,
F.
Mauri
,
R.
Mazzarello
,
S.
Paolini
,
A.
Pasquarello
,
L.
Paulatto
, and
C.
Sbraccia
,
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
11.
D. M.
Ceperley
and
B. J.
Alder
,
Phys. Rev. Lett.
45
,
566
(
1980
).
12.
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
23
,
5048
(
1981
).
13.
A. A.
Bolzan
,
C.
Fong
,
B. J.
Kennedy
, and
C. J.
Howard
,
Acta Crystallogr., Sect. B
53
,
373
(
1997
).
14.
K.
Sarasamak
,
S.
Limpijumnong
, and
W. R. L.
Lambrecht
,
Phys. Rev. B
82
,
035201
(
2010
).
15.
K. A.
Mengle
and
E.
Kioupakis
,
AIP Adv.
9
,
015313
(
2019
).
16.
K. V. K.
Rao
,
S. V. N.
Naidu
, and
L.
Iyengar
,
J. Appl. Crystallogr.
6
,
136
(
1973
).
17.
V. B.
Prakapenka
,
L. S.
Dubrovinsky
,
G.
Shen
,
M. L.
Rivers
,
S. R.
Sutton
,
V.
Dmitriev
,
H. P.
Weber
, and
T.
Le Bihan
,
Phys. Rev. B
67
,
132101
(
2003
).
18.
P.
Hermet
,
A.
Lignie
,
G.
Fraysse
,
P.
Armand
, and
P.
Papet
,
Phys. Chem. Chem. Phys.
15
,
15943
(
2013
).
19.
R. J. L.
Andon
and
K. C.
Mills
,
J. Chem. Thermodyn.
3
,
583
(
1971
).
You do not currently have access to this content.