The band alignment and the chemical bonding at the β-Ga2O3/AlN and β-Ga2O3/GaN interfaces are studied through hybrid functional calculations. We construct realistic slab models with III–O (III = Al, Ga) bonds dominating the chemical bonding at both interfaces. The epitaxial relationships between β-Ga2O3 and wurtzite AlN and GaN determined from experiments are adopted in our slab models. These models satisfy electron counting rules, and all the dangling bonds are saturated at the interfaces. β-Ga2O3 is found to form type II heterojunctions with both wurtzite AlN and GaN. For the interfaces with AlN and GaN substrates, the calculated valence band offsets are 0.74 and 0.90 eV, respectively. These are in good agreement with the experimental values. The obtained band alignments are useful for designing optical and electronic devices based on β-Ga2O3 and group III nitrides.

1.
M.
Higashiwaki
,
K.
Sasaki
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
,
Appl. Phys. Lett.
100
,
013504
(
2012
).
2.
M. A.
Mastro
,
A.
Kuramata
,
J.
Calkins
,
J.
Kim
,
F.
Ren
, and
S. J.
Pearton
,
ECS J. Solid State Sci. Technol.
6
,
P356
(
2017
).
3.
A. M.
Armstrong
,
M. H.
Crawford
,
A.
Jayawardena
,
A.
Ahyi
, and
S.
Dhar
,
J. Appl. Phys.
119
,
103102
(
2016
).
4.
J.
Kim
,
S.
Oh
,
M. A.
Mastro
, and
J.
Kim
,
Phys. Chem. Chem. Phys.
18
,
15760
(
2016
).
5.
A.
Kuramata
,
K.
Koshi
,
S.
Watanabe
,
Y.
Yamaoka
,
T.
Masui
, and
S.
Yamakoshi
,
Jpn. J. Appl. Phys., Part 1
55
,
1202A2
(
2016
).
6.
T.
Wang
,
W.
Li
,
C.
Ni
, and
A.
Janotti
,
Phys. Rev. Appl.
10
,
011003
(
2018
).
7.
A.
Ratnaparkhe
and
W. R. L.
Lambrecht
,
Phys. Status Solidi B
257
,
1900317
(
2020
).
8.
T. D.
Moustakas
and
R.
Paiella
,
Rep. Prog. Phys.
80
,
106501
(
2017
).
9.
H.
Sun
,
C. G. T.
Castanedo
,
K.
Liu
,
K.-H.
Li
,
W.
Guo
,
R.
Lin
,
X.
Liu
,
J.
Li
, and
X.
Li
,
Appl. Phys. Lett.
111
,
162105
(
2017
).
10.
J.-X.
Chen
,
J.-J.
Tao
,
H.-P.
Ma
,
H.
Zhang
,
J.-J.
Feng
,
W.-J.
Liu
,
C.
Xia
,
H.-L.
Lu
, and
D. W.
Zhang
,
Appl. Phys. Lett.
112
,
261602
(
2018
).
11.
W.
Wei
,
Z.
Qin
,
S.
Fan
,
Z.
Li
,
K.
Shi
,
Q.
Zhu
, and
G.
Zhang
,
Nanoscale Res. Lett.
7
,
562
(
2012
).
12.
P.
Li
,
H.
Shi
,
K.
Chen
,
D.
Guo
,
W.
Cui
,
Y.
Zhi
,
S.
Wang
,
Z.
Wu
,
Z.
Chen
, and
W.
Tang
,
J. Mater. Chem. C
5
,
10562
(
2017
).
13.
A.
Kalra
,
S.
Vura
,
S.
Rathkanthiwar
,
R.
Muralidharan
,
S.
Raghavan
, and
D. N.
Nath
,
Appl. Phys. Express
11
,
064101
(
2018
).
14.
J.
Montes
,
C.
Yang
,
H.
Fu
,
T.-H.
Yang
,
K.
Fu
,
H.
Chen
,
J.
Zhou
,
X.
Huang
, and
Y.
Zhao
,
Appl. Phys. Lett.
114
,
162103
(
2019
).
15.
A.
Kyrtsos
,
M.
Matsubara
, and
E.
Bellotti
,
Appl. Phys. Lett.
112
,
032108
(
2018
).
16.
S. J.
Pearton
,
J.
Yang
,
P. H.
Cary
,
F.
Ren
,
J.
Kim
,
M. J.
Tadjer
, and
M. A.
Mastro
,
Appl. Phys. Rev.
5
,
011301
(
2018
).
17.
A.
Alkauskas
,
P.
Broqvist
,
F.
Devynck
, and
A.
Pasquarello
,
Phys. Rev. Lett.
101
,
106802
(
2008
).
18.
P.
Broqvist
,
J. F.
Binder
, and
A.
Pasquarello
,
Appl. Phys. Lett.
94
,
141911
(
2009
).
19.
K.
Steiner
,
W.
Chen
, and
A.
Pasquarello
,
Phys. Rev. B
89
,
205309
(
2014
).
20.
D.
Colleoni
,
G.
Miceli
, and
A.
Pasquarello
,
Appl. Phys. Lett.
107
,
211601
(
2015
).
21.
Y.
Hinuma
,
Y.
Kumagai
,
I.
Tanaka
, and
F.
Oba
,
Phys. Rev. B
95
,
075302
(
2017
).
22.
T.
Wang
,
C.
Ni
, and
A.
Janotti
,
Phys. Rev. B
95
,
205205
(
2017
).
23.
L.
Weston
,
H.
Tailor
,
K.
Krishnaswamy
,
L.
Bjaalie
, and
C. G.
Van de Walle
,
Comput. Mater. Sci.
151
,
174
(
2018
).
24.
Z.
Zhang
,
Y.
Guo
, and
J.
Robertson
,
Appl. Phys. Lett.
114
,
161601
(
2019
).
25.
J.
VandeVondele
,
M.
Krack
,
F.
Mohamed
,
M.
Parrinello
,
T.
Chassaing
, and
J.
Hutter
,
Comput. Phys. Commun.
167
,
103
(
2005
).
26.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
27.
J.
VandeVondele
and
J.
Hutter
,
J. Chem. Phys.
127
,
114105
(
2007
).
28.
S.
Goedecker
,
M.
Teter
, and
J.
Hutter
,
Phys. Rev. B
54
,
1703
(
1996
).
29.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
30.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
,
J. Chem. Phys.
105
,
9982
(
1996
).
31.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
110
,
6158
(
1999
).
32.
G.
Miceli
,
W.
Chen
,
I.
Reshetnyak
, and
A.
Pasquarello
,
Phys. Rev. B
97
,
121112
(
2018
).
33.
M.
Guidon
,
J.
Hutter
, and
J.
VandeVondele
,
J. Chem. Theory Comput.
6
,
2348
(
2010
).
34.
C. G.
Van de Walle
and
R. M.
Martin
,
Phys. Rev. B
34
,
5621
(
1986
).
35.
A.
Baldereschi
,
S.
Baroni
, and
R.
Resta
,
Phys. Rev. Lett.
61
,
734
(
1988
).
36.
R.
Shaltaf
,
G.-M.
Rignanese
,
X.
Gonze
,
F.
Giustino
, and
A.
Pasquarello
,
Phys. Rev. Lett.
100
,
186401
(
2008
).
37.
F.
Bernardini
and
V.
Fiorentini
,
Phys. Rev. B
57
,
R9427
R9430
(
1998
).
38.
D. H.
Foster
and
G.
Schneider
, “
Band alignment and directional stability in abrupt and polar-compensated Si/ZnS interface calculations
,” arXiv:1403.5230 (
2014
).
39.
S.
Baroni
,
R.
Resta
,
A.
Baldereschi
, and
M.
Peressi
,
NATO ASI Series
(
Springer US
,
1989
), pp.
251
271
.
40.
H.
Peelaers
and
C. G.
Van de Walle
,
Phys. Status Solidi B
252
,
828
(
2015
).
41.
H.
Schulz
and
K.
Thiemann
,
Solid State Commun.
23
,
815
(
1977
).
42.
S.
Geller
,
J. Chem. Phys.
33
,
676
(
1960
).
43.
N.
Tit
,
M.
Peressi
, and
S.
Baroni
,
Phys. Rev. B
48
,
17607
(
1993
).
44.
P. W.
Peacock
and
J.
Robertson
,
Phys. Rev. Lett.
92
,
057601
(
2004
).
45.
J.
Robertson
and
L.
Lin
,
Appl. Phys. Lett.
99
,
222906
(
2011
).
46.
L.
Lin
and
J.
Robertson
,
Appl. Phys. Lett.
98
,
082903
(
2011
).
47.
S.
Lyu
and
W. R. L.
Lambrecht
,
J. Phys. D
53
,
015111
(
2020
).
48.
P. G.
Moses
,
M.
Miao
,
Q.
Yan
, and
C. G.
Van de Walle
,
J. Chem. Phys.
134
,
084703
(
2011
).
49.
S.
Lyu
and
A.
Pasquarello
(
2020
). “Band alignment at β-Ga2O3/III-N (III = Al, Ga) interfaces through hybrid functional calculations,”
Material Cloud Archive
50.
A.
Bouzid
and
A.
Pasquarello
,
Phys. Status Solidi
13
,
1800633
(
2019
).
You do not currently have access to this content.