Chiral nature of an enantiomer can be characterized by circular dichroism (CD) spectroscopy, but such a technique usually suffers from weak signal even with a sophisticated optical instrument. Recent demonstrations of plasmonic metasurfaces showed that chiroptical interaction of molecules can be engineered, thereby greatly simplifying a measurement system with high sensing capability. Here, by exploiting super-chiral field in a metasurface, we experimentally demonstrate high-sensitive vibrational CD spectroscopy of alanine enantiomers, the smallest chiral amino acid. Under linearly polarized excitation, the metasurface consisting of an array of staggered Au nano-rods selectively produces the left- and right-handed super-chiral fields at 1600 cm−1, which spectrally overlaps with the functional group vibrations of alanine. In the Fourier-transform infrared spectrometer measurements, the mirror symmetric CD spectra of D- and L-alanine are clearly observed depending on the handedness of the metasurface, realizing the reliable identification of small chiral molecules. The corresponding numerical simulations reveal the underlying resonant chiroptical interaction of plasmonic modes of the metasurface and vibrational modes of alanine. Our approach demonstrates a high-sensitive vibrational CD spectroscopic technique, opening up a reliable chiral sensing platform for advanced infrared inspection technologies.

1.
R.
Noyori
,
Asymmetric Catalysis in Organic Synthesis
(
John Wiley & Sons
,
New York
,
1994
).
2.
Circular Dichroism and the Conformational Analysis of Biomolecules
, edited by
G. D.
Fasman
(
Springer
,
New York
,
1996
).
3.
L. D.
Barron
,
Molecular Light Scattering and Optical Activity
(
Cambridge University Press
,
2004
).
4.
I. F.
Gallardo
and
L. J.
Webb
,
Langmuir
28
,
3510
(
2012
).
5.
T. B.
Freedman
,
X.
Cao
,
R. K.
Dukor
, and
L. A.
Nafie
,
Chirality
15
,
743
(
2003
).
6.
P. L.
Polavarapu
and
J.
He
,
Anal. Chem.
76
,
61 A
(
2004
).
7.
M.
Osawa
and
M.
Ikeda
,
J. Phys. Chem.
95
,
9914
(
1991
).
8.
F.
Neubrech
,
A.
Pucci
,
T. W.
Cornelius
,
S.
Karim
,
A.
García-Etxarri
, and
J.
Aizpurua
,
Phys. Rev. Lett.
101
,
157403
(
2008
).
9.
C.
Wu
,
A. B.
Khanikaev
,
R.
Adato
,
N.
Arju
,
A. A.
Yanik
,
H.
Altug
, and
G.
Shvets
,
Nat. Mater.
11
,
69
(
2012
).
10.
D.
Dregely
,
F.
Neubrech
,
H.
Duan
,
R.
Vogelgesang
, and
H.
Giessen
,
Nat. Commun.
4
,
2237
(
2013
).
11.
K. B.
Alici
and
I. F.
Gallardo
,
Sci. Rep.
3
,
2956
(
2013
).
12.
D.
Rodrigo
,
O.
Limaj
,
D.
Janner
,
D.
Etezadi
,
F. J.
García de Abajo
,
V.
Pruneri
, and
H.
Altug
,
Science
349
,
165
(
2015
).
13.
A.
Ishikawa
and
T.
Tanaka
,
Sci. Rep.
5
,
12570
(
2015
).
14.
A.
Ishikawa
,
S.
Hara
,
T.
Tanaka
,
Y.
Hayashi
, and
K.
Tsuruta
,
Sci. Rep.
7
,
3205
(
2017
).
15.
A.
Ishikawa
,
S.
Hara
,
T.
Tanaka
,
X.
Zhang
, and
K.
Tsuruta
,
Appl. Phys. Lett.
111
,
243106
(
2017
).
16.
Y.
Tang
and
A. E.
Cohen
,
Phys. Rev. Lett.
104
,
163901
(
2010
).
17.
E.
Hendry
,
R. V.
Mikhaylovskiy
,
L. D.
Barron
,
M.
Kadodwala
, and
T. J.
Davis
,
Nano Lett.
12
,
3640
(
2012
).
18.
M.
Schäferling
,
X.
Yin
, and
H.
Giessen
,
Opt. Express
20
,
26326
(
2012
).
19.
M.
Schäferling
,
D.
Dregely
,
M.
Hentschel
, and
H.
Giessen
,
Phys. Rev. X
2
,
031010
(
2012
).
20.
T. J.
Davis
and
E.
Hendry
,
Phys. Rev. B
87
,
085405
(
2013
).
21.
M. L.
Nesterov
,
X.
Yin
,
M.
Schäferling
,
H.
Giessen
, and
T.
Weiss
,
ACS Photonics
3
,
578
(
2016
).
22.
Y.
Tang
and
A. E.
Cohen
,
Science
332
,
333
(
2011
).
23.
N.
Meinzer
,
E.
Hendry
, and
W. L.
Barnes
,
Phys. Rev. B
88
,
041407
(
2013
).
24.
E.
Hendry
,
T.
Carpy
,
J.
Johnston
,
M.
Popland
,
R. V.
Mikhaylovskiy
,
A. J.
Lapthorn
,
S. M.
Kelly
,
L. D.
Barron
,
N.
Gadegaard
, and
M.
Kadodwala
,
Nat. Nanotechnol.
5
,
783
(
2010
).
25.
R.
Tullius
,
A. S.
Karimullah
,
M.
Rodier
,
B.
Fitzpatrick
,
N.
Gadegaard
,
L. D.
Barron
,
V. M.
Rotello
,
G.
Cooke
,
A.
Lapthorn
, and
M.
Kadodwala
,
J. Am. Chem. Soc.
137
,
8380
(
2015
).
26.
J.
García-Guirado
,
M.
Svedendahl
,
J.
Puigdollers
, and
R.
Quidant
,
Nano. Lett.
18
,
6279
(
2018
).
27.
R.
Knipper
,
V.
Kopecký
,
U.
Huebner
,
J.
Popp
, and
T. G.
Mayerhöfer
,
ACS Photonics
5
,
3238
(
2018
).
28.
M.
Tulio
,
S.
Rosado
,
M.
Leonor
,
R. S.
Duarte
, and
R.
Fausto
,
J. Mol. Struct.
410–411
,
343
(
1997
).
29.
S.
Jähnigen
,
A.
Scherrer
,
R.
Vuilleumier
, and
D.
Sebastiani
,
Angew. Chem., Int. Ed.
57
,
13344
(
2018
).
30.
P. B.
Johnson
and
R. W.
Christy
,
Phys. Rev. B
6
,
4370
(
1972
).
31.
M.
Decker
,
M.
Ruther
,
C. E.
Kriegler
,
J.
Zhou
,
C. M.
Soukoulis
,
S.
Linden
, and
M.
Wegener
,
Opt. Lett.
34
,
2501
(
2009
).
32.
J. K.
Gansel
,
M.
Thiel
,
M. S.
Rill
,
M.
Decker
,
K.
Bade
,
V.
Saile
,
G.
von Freymann
,
S.
Linden
, and
M.
Wegener
,
Science
325
,
1513
(
2009
).
33.
L. E.
Barr
,
S. A. R.
Horsley
,
I. R.
Hooper
,
J. K.
Eager
,
C. P.
Gallagher
,
S. M.
Hornett
,
A. P.
Hibbins
, and
E.
Hendry
,
Phys. Rev. B
97
,
155418
(
2018
).
34.
A. O.
Govorov
,
J. Phys. Chem. C
115
,
7914
(
2011
).
35.
N. A.
Abdulrahman
,
Z.
Fan
,
T.
Tonooka
,
S. M.
Kelly
,
N.
Gadegaard
,
E.
Hendry
,
A. O.
Govorov
, and
M.
Kadodwala
,
Nano Lett.
12
,
977
(
2012
).
36.
W.
Zhang
,
T.
Wu
,
R.
Wang
, and
X.
Zhang
,
J. Phys. Chem. C
121
,
666
(
2017
).
37.
K.
Yao
and
Y.
Zheng
,
J. Phys. Chem. C
123
,
11814
(
2019
).
38.
J.
García-Guirado
,
M.
Svedendahl
,
J.
Puigdollers
, and
R.
Quidant
,
Nano. Lett.
20
,
585
(
2020
).
39.
M.
Schäferling
,
N.
Engheta
,
H.
Giessen
, and
T.
Weiss
,
ACS Photonics
3
,
1076
(
2016
).
40.
H. J.
Simpson
, Jr.
and
R. E.
Marsh
,
Acta Crystallogr.
20
,
550
(
1966
).

Supplementary Material

You do not currently have access to this content.