Fe doping into BaTiO3 stabilizes the paraelectric hexagonal phase in place of the ferroelectric tetragonal one. We show that simultaneous doping of Bi along with Fe into BaTiO3 effectively enhances the magnetoelectric (ME) multiferroic response (both ferromagnetism and ferroelectricity) at room temperature, through careful tuning of Fe valency along with the controlled recovery of the ferroelectric-tetragonal phase. We also report a systematic increase in large dielectric constant values as well as reduction in loss tangent values with relatively moderate temperature variation of the dielectric constant around room temperature with increasing Bi doping content in Ba1xBixTi0.90Fe0.10O3 (0 x 0.10), which makes the higher Bi–Fe codoped sample (x = 0.08) promising for use as a room-temperature high-κ dielectric material. Interestingly, the x = 0.08 (Bi–Fe codoped) sample is not only found to be ferroelectrically (∼20 times) and ferromagnetically (∼6 times) stronger than x = 0 (only Fe-doped) at room temperature, but also observed to be better insulating (larger bandgap) with indirect signatures of larger ME coupling as indicated from anomalous reduction of the magnetic coercive field with decreasing temperature. Thus, room-temperature ME multiferroicity has been engineered in Bi and Fe codoped BTO (BaTiO3) compounds.

1.
N. A.
Hill
,
J. Phys. Chem. B
104
,
6694
(
2000
).
3.
4.
B.
Xu
,
K. B.
Yin
,
J.
Lin
,
Y. D.
Xia
,
X. G.
Wan
,
J.
Yin
,
X. J.
Bai
,
J.
Du
, and
Z. G.
Liu
,
Phys. Rev. B
79
,
134109
(
2009
).
5.
P.
Pal
,
K.
Rudrapal
,
S.
Mahana
,
S.
Yadav
,
T.
Paramanik
,
S.
Mishra
,
K.
Singh
,
G.
Sheet
,
D.
Topwal
,
A. R.
Chaudhuri
, and
D.
Choudhury
,
Phys. Rev. B
101
,
064409
(
2020
).
6.
Y. H.
Lin
,
J.
Yuan
,
S.
Zhang
,
Y.
Zhang
,
J.
Liu
,
Y.
Wang
, and
C. W.
Nan
,
Appl. Phys. Lett.
95
,
033105
(
2009
).
7.
L. B.
Luo
,
Y. G.
Zhao
,
H. F.
Tian
,
J. J.
Yang
,
J. Q.
Li
,
J. J.
Ding
,
B.
He
,
S. Q.
Wei
, and
C.
Gao
,
Phys. Rev. B
79
,
115210
(
2009
).
8.
N. A.
Spaldin
and
R.
Ramesh
,
Nat. Mater.
18
,
203
(
2019
).
9.
D. H.
Kim
and
B. W.
Lee
,
J. Korean Phys. Soc.
68
,
574
(
2016
).
10.
C. H.
Perry
and
D. B.
Hall
,
Phys. Rev. Lett.
15
,
700
(
1965
).
11.
H. M.
Nguyen
,
N. V.
Dang
,
P. Y.
Chuang
,
T. D.
Thanh
,
C. W.
Hu
,
T. Y.
Chen
,
V. D.
Lam
,
C. H.
Lee
, and
L. V.
Hong
,
Appl. Phys. Lett.
99
,
202501
(
2011
).
12.
B.
Rajeswaran
,
D. I.
Khomskii
,
A. K.
Zvezdin
,
C. N. R.
Rao
, and
A.
Sundaresan
,
Phys. Rev. B
86
,
214409
(
2012
).
13.
A. R.
Chaudhuri
and
S. B.
Krupanidhi
,
Solid State Commun.
150
,
660
(
2010
).
14.
D.
Choudhury
,
A.
Venimadhav
,
C.
Kakarla
,
K. T.
Delaney
,
P. S.
Devi
,
P.
Mondal
,
R.
Nirmala
,
J.
Gopalakrishnan
,
N. A.
Spaldin
,
U. V.
Waghmare
, and
D. D.
Sarma
,
Appl. Phys. Lett.
96
,
162903
(
2010
).
15.
Z.
Li
,
M.
Yang
,
J. S.
Park
,
S. H.
Wei
,
J. J.
Berry
, and
K.
Zhu
,
Chem. Mater.
28
,
284
(
2016
).
16.
A. I.
Kingon
,
J. P.
Maria
, and
S. K.
Streiffer
,
Nature
406
,
1032
(
2000
).
17.
K.
Eisenbeiser
,
J. M.
Finder
,
Z.
Yu
,
J.
Ramdani
,
J. A.
Curless
,
J. A.
Hallmark
,
R.
Droopad
,
W. J.
Ooms
,
L.
Salem
,
S.
Bradshaw
, and
C. D.
Overgaard
,
Appl. Phys. Lett.
76
,
1324
(
2000
).
18.
D.
Karmakar
,
S. K.
Mandal
,
R. M.
Kadam
,
P. L.
Paulose
,
A. K.
Rajarajan
,
T. K.
Nath
,
A. K.
Das
,
I.
Dasgupta
, and
G. P.
Das
,
Phys. Rev. B
75
,
144404
(
2007
).
19.
T.
Chakraborty
,
S.
Ray
, and
M.
Itoh
,
Phys. Rev. B
83
,
144407
(
2011
).
20.
S. D.
Bhame
,
V. L. J.
Joly
, and
P. A.
Joy
,
Phys. Rev. B
72
,
054426
(
2005
).
21.
J.
Gutiérrez
,
A.
Peña
,
J. M.
Barandiarán
,
J. L.
Pizarro
,
T.
Hernández
,
L.
Lezama
,
M.
Insausti
, and
T.
Rojo
,
Phys. Rev. B
61
,
9028
(
2000
).
22.
J.
Lu
,
A.
Günther
,
F.
Schrettle
,
F.
Mayr
,
S.
Krohns
,
P.
Lunkenheimer
,
A.
Pimenov
,
V. D.
Travkin
,
A. A.
Mukhin
, and
A.
Loidl
,
Eur. Phys. J. B
75
,
451
(
2010
).
23.
A. S.
Teja
and
P. Y.
Koh
,
Prog. Cryst. Growth Charact. Mater.
55
,
22
(
2009
).
24.
Y.
Ishikawa
and
S.-I.
Akimoto
,
J. Phys. Soc. Jpn.
13
,
1298
(
1958
).
25.
S.
Akimoto
,
T.
Katsura
, and
M. J.
Yoshida
,
J. Geomagn. Geoelectr.
9
,
165
(
1957
).
26.
X. H.
Huang
,
J. F.
Ding
,
G. Q.
Zhang
,
Y.
Hou
,
Y. P.
Yao
, and
X. G.
Li
,
Phys. Rev. B
78
,
224408
(
2008
).
27.
V.
Markovich
,
I.
Fita
,
A.
Wisniewski
,
D.
Mogilyansky
,
R.
Puzniak
,
L.
Titelman
,
C.
Martin
, and
G.
Gorodetsky
,
Phys. Rev. B
81
,
094428
(
2010
).
28.
S.
Patankar
,
S. K.
Pandey
,
V. R.
Reddy
,
A.
Gupta
,
A.
Banerjee
, and
P.
Chaddah
,
Europhys. Lett.
90
,
57007
(
2010
).
29.
B.
Ahmmad
,
M. Z.
Islam
,
A.
Billah
, and
M. A.
Basith
,
J. Phys. D: Appl. Phys.
49
,
095001
(
2016
).
30.
T. J.
Park
,
G. C.
Papaefthymiou
,
A. J.
Viescas
,
Y.
Lee
,
H.
Zhou
, and
S. S.
Wong
,
Phys. Rev. B
82
,
024431
(
2010
).
31.
N.
Wang
,
J.
Cheng
,
A.
Pyatakov
,
A. K.
Zvezdin
,
J. F.
Li
,
D.
Viehland
, and
T.
Wu
,
Phys. Rev. B
72
,
104434
(
2005
).
32.
R. E.
Fayling
,
J. Appl. Phys.
49
,
1823
(
1978
).
33.
B.
Ruette
,
S.
Zvyagin
,
A. P.
Pyatakov
,
A.
Bush
,
J. F.
Li
,
V. I.
Belotelov
,
A. K.
Zvezdin
, and
D.
Viehland
,
Phys. Rev. B
69
,
064114
(
2004
).
34.
A.
Singh
,
V.
Pandey
,
R. K.
Kotnala
, and
D.
Pandey
,
Phys. Rev. Lett.
101
,
247602
(
2008
).

Supplementary Material

You do not currently have access to this content.