Compensated ferrimagnetic Heusler compounds with high spin polarization and a low net magnetic moment are strategically important materials for spin-logic and further energy-efficient spintronic applications. However, the element-resolved magnetic ordering of these compensated ferrimagnets remains an open issue. Here, we report a direct observation of the spin and orbital moments of the B2 phase Mn2CoAl thin film using the synchrotron-based x-ray magnetic circular dichroism technique. An ferrimagnetic ordering between Mn and Co elements and a compensated-ferrimagnet-like small net magnetic moment of only 0.34 μB/f.u. were observed unambiguously in B2 Mn2CoAl. Antiparallel coupling between Mn and Co is attributed to the mixture of the Mn(B) and Al occupation in the B2 phase Mn2CoAl lattice. This work demonstrates great potential of the compensated ferrimagnetic half-metallic inverse Heusler compounds Mn2CoAl for spintronic applications.

You do not currently have access to this content.