We report a digital microfluidic device to transport aqueous droplets on an open surface in air using electrowetting-on-dielectric (EWOD) with anisotropic ratchet conveyors (ARCs). ARCs are micro-sized periodic semicircular hydrophilic regions on a hydrophobic background, providing anisotropic wettability. SiNx and Cytop are used as the dielectric layer between the water droplet and working electrodes. By adopting parylene as a stencil mask, hydrophilic patterning on the hydrophobic Cytop thin film layer is achieved without the loss of Cytop hydrophobicity. While the traditional EWOD platform requires the control of multiple electrodes to transport the droplet, our system utilizes only two controlling electrodes. We demonstrate that 15 μl water droplets are transported at a speed of 13 mm/s under 60 Vpeak sinusoid AC signal at 50 Hz. Droplet transport at 20 Hz is also presented, demonstrating that the system can operate within a range of frequencies.

1.
W. C.
Nelson
and
C.-J. C.
Kim
,
J. Adhes. Sci. Technol.
26
(
12-17
),
1747
1771
(
2012
).
2.
H.-W.
Lu
,
F.
Bottausci
,
J. D.
Fowler
,
A. L.
Bertozzi
, and
C.
Meinhart
,
Lab Chip
8
(
3
),
456
461
(
2008
).
3.
M. G.
Pollack
,
A. D.
Shenderov
, and
R. B.
Fair
,
Lab Chip
2
(
2
),
96
101
(
2002
).
4.
S. K.
Cho
,
H.
Moon
, and
C.-J.
Kim
,
J. Microelectromech. Syst.
12
(
1
),
70
80
(
2003
).
5.
R. A.
Hayes
and
B. J.
Feenstra
,
Nature
425
(
6956
),
383
(
2003
).
6.
S.
Kuiper
and
B.
Hendriks
,
Appl. Phys. Lett.
85
(
7
),
1128
1130
(
2004
).
7.
R.
Yan
,
T. S.
McClure
,
I. H.
Jasim
,
A. K. R.
Koppula
,
S.
Wang
,
M.
Almasri
, and
C.-L.
Chen
,
Appl. Phys. Lett.
113
(
20
),
204101
(
2018
).
8.
D.
Sun
and
K. F.
Böhringer
,
Micromachines
10
(
2
),
101
(
2019
).
9.
J.
Lee
and
C.-J.
Kim
,
J. Microelectromech. Syst.
9
(
2
),
171
180
(
2000
).
10.
C. W.
Nelson
,
C. M.
Lynch
, and
N. B.
Crane
,
Lab Chip
11
(
13
),
2149
2152
(
2011
).
11.
Q.
Ni
,
D. E.
Capecci
,
M.
Schlafly
, and
N. B.
Crane
,
Microfluid. Nanofluid.
20
(
8
),
122
(
2016
).
12.
Q.
Ni
,
D. E.
Capecci
, and
N. B.
Crane
,
Sens. Actuators, A
247
,
579
586
(
2016
).
13.
P.
Sen
and
C.-J. C.
Kim
,
Langmuir
25
(
8
),
4302
4305
(
2009
).
14.
T. A.
Duncombe
,
E. Y.
Erdem
,
A.
Shastry
,
R.
Baskaran
, and
K. F.
Böhringer
,
Adv. Mater.
24
(
12
),
1545
1550
(
2012
).
15.
T. A.
Duncombe
,
J. F.
Parsons
, and
K. F.
Böhringer
,
Langmuir
28
(
38
),
13765
13770
(
2012
).
16.
C.-C.
Cho
,
D.
Smith
, and
J.
Anderson
,
Mater. Chem. Phys.
42
(
2
),
91
95
(
1995
).
17.
S.
Makohliso
,
L.
Giovangrandi
,
D.
Leonard
,
H.
Mathieu
,
M.
Ilegems
, and
P.
Aebischer
,
Biosens. Bioelectron.
13
(
11
),
1227
1235
(
1998
).
18.
H.
Zhang
,
Q.
Yan
,
Q.
Xu
,
C.
Xiao
, and
X.
Liang
,
Sci. Rep.
7
(
1
),
3983
(
2017
).
19.
E.
Baird
,
P.
Young
, and
K.
Mohseni
,
Microfluid. Nanofluid.
3
(
6
),
635
644
(
2007
).
20.
A.
Cassie
and
S.
Baxter
,
Trans. Faraday Soc.
40
,
546
551
(
1944
).
21.
C.
Extrand
,
Langmuir
19
(
9
),
3793
3796
(
2003
).

Supplementary Material

You do not currently have access to this content.