Liquid-vapor phase-change cooling has a significant potential to facilitate the development of highly dense electronics by leveraging latent heat during the phase transition to remove heat from hotspots. A promising form of liquid–vapor phase-change cooling is coalescence-induced jumping droplet condensation, where droplet growth results in coalescence and gravity-independent jumping from the cold surface due to capillary-inertial energy conversion. Once the departed droplets reach the hotspot, heat is extracted via evaporation and through vapor return, subsequently spreading to the cold surface via condensation. Realizing the full potential of jumping droplet cooling requires a detailed understanding of the physics governing the process. Here, we examine the fundamental thermal and hydrodynamic limits of jumping droplet condensation. We demonstrate that jumping is mainly governed by the rate of droplet growth and fluid thermophysical properties. Timescale analysis demonstrates that the upper bound of water vapor jumping droplet condensation critical heat flux is 20 kW/cm2, significantly higher than that experimentally observed thus far due to surface structure limitations. Analysis of a wide range of available working fluids shows that liquid metals such as Li, Na, and Hg can obtain superior performance when compared to water.

1.
J.
Kassakian
and
T.
Jahns
,
IEEE J. Emerging Sel. Top. Power Electron.
1
(
2
),
47
58
(
2013
).
2.
N.
Pallo
,
T.
Foulkes
,
T.
Modeer
,
S.
Coday
, and
R.
Pilawa
, in
IEEE Applied Power Electronics Conference and Exposition (APEC)
(
2018
), pp.
1656
1661
.
3.
R.
Prasher
,
Proc. IEEE
94
(
8
),
1571
1586
(
2006
).
4.
B.
Agostini
,
M.
Fabbri
,
J. E.
Park
,
L.
Wojtan
,
J. R.
Thome
, and
B.
Michel
,
Heat Transfer Eng.
28
(
4
),
258
281
(
2007
).
5.
T.
Yang
,
T.
Foulkes
,
B.
Kwon
,
J.
Kang
,
P.
Braun
,
W.
King
, and
N.
Miljkvoic
,
IEEE Trans. Compon. Pack. Manuf. Technol.
9
(
12
),
2341
2351
(
2019
).
6.
B.
Kwon
,
T.
Foulkes
,
T.
Yang
,
N.
Miljkovic
, and
W. P.
King
, “
Air jet impingement cooling of electronic devices using additively manufactured nozzles
,”
IEEE Trans. Compon. Pack. Manuf. Technol.
(published online).
7.
A.
Bar-Cohen
and
H.
Schweitzer
,
J. Heat Transfer
107
(
4
),
772
778
(
1985
).
8.
T.
Foulkes
,
J.
Oh
,
R.
Pilawa
, and
N.
Miljkovic
,
Int. J. Heat Mass Transfer
133
,
1154
1164
(
2019
).
9.
B.
Iverson
,
T.
Davis
,
S. V.
Garimella
,
M.
North
, and
S.
Kang
,
J. Thermophys. Heat Transfer
21
(
2
),
392
404
(
2007
).
10.
X.
Chen
,
J.
Wu
,
R.
Ma
,
M.
Hua
,
N.
Koratkar
,
S.
Yao
, and
Z.
Wang
,
Adv. Func. Mater.
21
(
24
),
4617
4623
(
2011
).
11.
K.
Rykaczewski
,
Langmuir
28
(
20
),
7720
7729
(
2012
).
12.
K.
Rykaczewski
,
A.
Paxson
,
S.
Anand
,
X.
Chen
,
Z.
Wang
, and
K.
Varanasi
,
Langmuir
29
(
3
),
881
891
(
2013
).
13.
J.
Boreyko
and
C.
Chen
,
Int. J. Heat Mass Transfer
61
,
409
413
(
2013
).
14.
Z.
Liu
and
D.
Preston
,
Joule
3
(
5
),
1182
1184
(
2019
).
15.
C.
Dietz
,
K.
Rykaczewski
,
A. G.
Fedorov
, and
Y.
Joshi
,
Appl. Phys. Lett.
97
(
3
),
033104
(
2014
).
16.
H.
Cho
,
D.
Preston
,
Y.
Zhu
, and
E.
Wang
,
Nat. Rev. Mater.
2
,
16092
(
2016
).
17.
K.
Wiedenheft
,
H.
Guo
,
X.
Qu
,
J.
Boreyko
,
F.
Liu
,
K.
Zhang
,
F.
Eid
,
A.
Choudhury
,
Z.
Li
, and
C.
Chen
,
Appl. Phys. Lett.
110
(
14
),
141601
(
2017
).
18.
J.
Oh
,
P.
Birbarah
,
T.
Foulkes
,
S.
Yin
,
M.
Rentauskas
,
J.
Neely
,
R.
Pilawa
, and
N.
Miljkovic
,
Apl. Phys. Lett.
110
,
123107
(
2017
).
19.
T.
Foulkes
,
J.
Oh
,
P.
Birbarah
,
J.
Neely
,
N.
Miljkovic
, and
R. C. N.
Pilawa
, in
IEEE Applied Power Electronics Conference and Exposition (APEC)
(
2017
), pp.
912
918
.
20.
D.
Preston
and
E.
Wang
,
Joule
2
(
2
),
205
207
(
2018
).
21.
J. B.
Boreyko
and
C. H.
Chen
,
Phys. Rev. Lett.
103
(
18
),
184501
(
2009
).
22.
W.
Gambill
and
J.
Lienhard
,
J. Heat Transfer
111
,
815
818
(
1989
).
23.
B.
Mikic
and
W.
Rohsenow
,
Heat Mass Transfer
2
,
283
293
(
1969
).
24.
S.
Chavan
,
H.
Cha
,
D.
Orejon
,
K.
Nawaz
,
N.
Singla
,
Y.
Yeung
,
D.
Park
,
D.
Kang
,
Y.
Chang
,
Y.
Takata
, and
N.
Miljkvoic
,
Langmuir
32
(
31
),
7774
7787
(
2016
).
25.
M.
Kim
,
H.
Cha
,
P.
Birbarah
,
S.
Chavan
,
C.
Zhong
,
Y.
Xu
, and
N.
Miljkovic
,
Langmuir
31
(
49
),
13452
13466
(
2015
).
26.
H.
Cha
,
C.
Xu
,
J.
Sotelo
,
J.
Chun
,
Y.
Yokoyama
,
R.
Enright
, and
N.
Miljkovic
,
Phys. Rev. Fluids
1
,
064102
(
2016
).
27.
X.
Yan
,
L.
Zhang
,
S.
Sett
,
L.
Feng
,
C.
Zhao
,
Z.
Huang
,
H.
Vahabi
,
A. K.
Kota
,
F.
Chen
, and
N.
Miljkovic
,
ACS Nano
13
(
2
),
1309
1323
(
2019
).
28.
J.
Bonjour
,
M.
Clausse
, and
M.
Lallemand
,
Exp. Therm. Fluid Sci.
20
(
3
),
180
187
(
2000
).
29.
P.
Birbarah
,
Z.
Li
,
A.
Pauls
, and
N.
Miljkovic
,
Langmuir
31
(
28
),
7885
7896
(
2015
).
30.
P.
Kundu
,
I.
Cohen
, and
D.
Dowling
,
Fluid Mechanics
, 5th ed. (
Academic Press
,
2012
).
31.
E.
Olceroglu
and
M.
McCarthy
,
ACS Appl. Mater. Interfaces
8
(
8
),
5729
5736
(
2016
).
32.
F.
Chu
,
X.
Wu
,
B.
Zhu
, and
X.
Zhang
,
Appl. Phys. Lett.
108
,
194103
(
2016
).
33.
M.
White
,
Physics
68
(
1
),
27
29
(
2012
).
34.
P.
Dunn
and
D.
Reay
,
Heat Pipes
, 3rd ed. (
Pergamon
,
1982
).
35.
A.
Faghri
,
Heat Pipe Science and Technology
, 2nd ed. (
Global Digital Press
,
2016
).
36.
M.
Kollera
and
U.
Grigull
,
Warme Stoffubertrangung
2
,
31
35
(
1969
).
37.
S.
Sett
,
P.
Sokalski
,
K.
Boyina
,
L.
Li
,
K.
Rabbi
,
H.
Auby
,
T.
Foulkes
,
A.
Mahvi
,
G.
Barac
,
L.
Bolton
, and
N.
Miljkovic
,
Nano Lett.
19
,
5287
5296
(
2019
).
38.
H.
Vahabi
,
W.
Wang
,
J.
Mabry
, and
A.
Kota
,
Sci. Adv.
4
,
eaau3488
(
2018
).

Supplementary Material

You do not currently have access to this content.