We have experimentally demonstrated an O-band Mach–Zehnder interferometer (MZI) based on an N-rich silicon nitride platform combined with Ge2Sb2Te5 for future optical communication applications. The device operation relies on controlling the waveguide's losses using a phase change material cell, which can be changed from amorphous (low-loss) to crystalline (high-loss). An extinction ratio as high as 11 dB was obtained between the amorphous (ON) and the crystalline (OFF) states of the MZI optical building block. The insertion loss of the MZI structure per cell unit length was measured to be as high as 0.87 dB/μm in the OFF state and as low as 0.064 dB/μm in the ON state for TM polarization.

1.
G. T.
Reed
,
G.
Mashanovich
,
F. Y.
Gardes
, and
D. J.
Thomson
, “
Silicon optical modulators
,”
Nat. Photonics
4
,
518
526
(
2010
).
2.
N.
Sherwood-Droz
,
H.
Wang
,
L.
Chen
,
B. G.
Lee
,
A.
Biberman
,
K.
Bergman
, and
M.
Lipson
, “
Optical 4 × 4 hitless silicon router for optical networks-on-Chip (NoC): Erratum
,”
Opt. Express
16
,
19395
(
2008
).
3.
D.
Thomson
,
A.
Zilkie
,
J. E.
Bowers
,
T.
Komljenovic
,
G. T.
Reed
,
L.
Vivien
,
D.
Marris-Morini
,
E.
Cassan
,
L.
Virot
,
J.-M.
Fédéli
,
J.-M.
Hartmann
,
J. H.
Schmid
,
D.-X.
Xu
,
F.
Boeuf
,
P.
O'Brien
,
G. Z.
Mashanovich
, and
M.
Nedeljkovic
, “
Roadmap on silicon photonics
,”
J. Opt.
18
,
073003
(
2016
).
4.
T.
Domínguez Bucio
,
A. Z.
Khokhar
,
G. Z.
Mashanovich
, and
F. Y.
Gardes
, “
Athermal silicon nitride angled mmi wavelength division (de)multiplexers for the near-infrared
,”
Opt. Express
25
,
27310
27320
(
2017
).
5.
T.
Domínguez Bucio
,
A. Z.
Khokhar
,
C.
Lacava
,
S.
Stankovic
,
G. Z.
Mashanovich
,
P.
Petropoulos
, and
F. Y.
Gardes
, “
Material and optical properties of low-temperature NH3-free PECVD SiNx layers for photonic applications
,”
J. Phys. D: Appl. Phys.
50
,
025106
(
2017
).
6.
J. N.
Milgram
,
J.
Wojcik
,
P.
Mascher
, and
A. P.
Knights
, “
Optically pumped Si nanocrystal emitter integrated with low loss silicon nitride waveguides
,”
Opt. Express
15
,
14679
14688
(
2007
).
7.
S.
Gaugiran
,
S.
Gétin
,
J.
Fedeli
,
G.
Colas
,
A.
Fuchs
,
F.
Chatelain
, and
J.
Dérouard
, “
Optical manipulation of microparticles and cells on silicon nitride waveguides
,”
Opt. Express
13
,
6956
6963
(
2005
).
8.
R.
Soref
, “
Tutorial: Integrated-photonic switching structures
,”
APL Photonics
3
,
021101
(
2018
).
9.
J.
Faneca
,
T. S.
Perova
,
V.
Tolmachev
, and
A.
Baldycheva
, “
One-dimensional multi-channel photonic crystal resonators based on silicon-on-insulator with high quality factor
,”
Front. Phys.
6
,
33
(
2018
).
10.
J.
Faneca
,
B. T.
Hogan
,
I. R.
Diez
,
F. Y.
Gardes
, and
A.
Baldycheva
, “
Tuning silicon-rich nitride microring resonances with graphene capacitors for high-performance computing applications
,”
Opt. Express
27
,
35129
35140
(
2019
).
11.
C.
Ríos
,
M.
Stegmaier
,
P.
Hosseini
,
D.
Wang
,
T.
Scherer
,
C. D.
Wright
,
H.
Bhaskaran
, and
W. H. P.
Pernice
, “
Integrated all-photonic non-volatile multi-level memory
,”
Nat. Photonics
9
,
725
732
(
2015
).
12.
C.
Rios
,
P.
Hosseini
,
C. D.
Wright
,
H.
Bhaskaran
, and
W. H. P.
Pernice
, “
On-chip photonic memory elements employing phase-change materials
,”
Adv. Mater.
26
,
1372
1377
(
2014
).
13.
C.
Rios
,
M.
Stegmaier
,
Z.
Cheng
,
N.
Youngblood
,
C. D.
Wright
,
W. H. P.
Pernice
, and
H.
Bhaskaran
, “
Controlled switching of phase-change materials by evanescent-field coupling in integrated photonics [Invited]
,”
Opt. Mater. Express
8
,
2455
(
2018
).
14.
W.
Wełnic
,
A.
Pamungkas
,
R.
Detemple
,
C.
Steimer
,
S.
Blügel
, and
M.
Wuttig
, “
Unravelling the interplay of local structure and physical properties in phase-change materials
,”
Nat. Mater.
5
,
56
62
(
2006
).
15.
W.
Wełnic
,
S.
Botti
,
L.
Reining
, and
M.
Wuttig
, “
Origin of the optical contrast in phase-change materials
,”
Phys. Rev. Lett.
98
,
236403
(
2007
).
16.
M.
Wuttig
,
H.
Bhaskaran
, and
T.
Taubner
, “
Phase-change materials for non-volatile photonic applications
,”
Nat. Photonics
11
,
465
476
(
2017
).
17.
M.
Wuttig
and
N.
Yamada
, “
Phase-change materials for rewriteable data storage
,”
Nat. Mater.
6
,
824
(
2007
).
18.
H.
Zhang
,
L.
Zhou
,
B. M. A.
Rahman
,
X.
Wu
,
L.
Lu
,
Y.
Xu
,
J.
Xu
,
J.
Song
,
Z.
Hu
,
L.
Xu
, and
J.
Chen
, “
Ultracompact Si-GST hybrid waveguides for nonvolatile light wave manipulation
,”
IEEE Photonics J.
10
,
1
10
(
2018
).
19.
N.
Ciocchini
,
M.
Laudato
,
M.
Boniardi
,
E.
Varesi
,
P.
Fantini
,
A. L.
Lacaita
, and
D.
Ielmini
, “
Bipolar switching in chalcogenide phase change memory
,”
Sci. Rep.
6
,
29162
(
2016
).
20.
F.
Xiong
,
A. D.
Liao
,
D.
Estrada
, and
E.
Pop
, “
Low-power switching of phase-change materials with carbon nanotube electrodes
,”
Science
332
,
568
570
(
2011
).
21.
J.
Zheng
,
Z.
Fang
,
C.
Wu
,
S.
Zhu
,
P.
Xu
,
J. K.
Doylend
,
S.
Deshmukh
,
E.
Pop
,
S.
Dunham
,
M.
Li
 et al, “
Nonvolatile electrically reconfigurable integrated photonic switch
,” preprint arXiv:1912.07680 (
2019
).
22.
Z.
Cheng
,
C.
Ríos
,
W. H. P.
Pernice
,
C. D.
Wright
, and
H.
Bhaskaran
, “
On-chip photonic synapse—Supplementary material
,”
Sci. Adv.
3
(
9
),
e1700160
(
2017
).
23.
J.
Zheng
,
A.
Khanolkar
,
P.
Xu
,
S.
Colburn
,
S.
Deshmukh
,
J.
Myers
,
J.
Frantz
,
E.
Pop
,
J.
Hendrickson
,
J.
Doylend
,
N.
Boechler
, and
A.
Majumdar
, “
GST-on-silicon hybrid nanophotonic integrated circuits: A non-volatile quasi-continuously reprogrammable platform
,”
Opt. Mater. Express
8
,
1551
1561
(
2018
).
24.
K. J.
Miller
,
R. F.
Haglund
, and
S. M.
Weiss
, “
Optical phase change materials in integrated silicon photonic devices: Review
,”
Opt. Mater. Express
8
,
2415
2429
(
2018
).
25.
A.
Sebastian
,
M. L.
Gallo
,
G. W.
Burr
,
S.
Kim
,
M.
BrightSky
, and
E.
Eleftheriou
, “
Tutorial: Brain-inspired computing using phase-change memory devices
,”
J. Appl. Phys.
124
,
111101
(
2018
).
26.
E.
Gemo
,
S. G.-C.
Carrillo
,
C. R.
De Galarreta
,
A.
Baldycheva
,
H.
Hayat
,
N.
Youngblood
,
H.
Bhaskaran
,
W. H.
Pernice
, and
C. D.
Wright
, “
Plasmonically-enhanced all-optical integrated phase-change memory
,”
Opt. Express
27
,
24724
24737
(
2019
).
27.
T.
Domínguez Bucio
,
A. Z.
Khokhar
,
G. Z.
Mashanovich
, and
F. Y.
Gardes
, “
N-rich silicon nitride angled MMI for coarse wavelength division (de)multiplexing in the O-band
,”
Opt. Lett.
43
,
1251
(
2018
).
28.
J.
Hegedüs
and
S. R.
Elliott
, “
Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memorymaterials
,”
Nat. Mater.
7
,
399
405
(
2008
).
29.
T.
Matsunaga
and
N.
Yamada
, “
A study of highly symmetrical crystal structures, commonly seen in high-speed phase-change materials, using synchrotron radiation
,”
Jpn. J. Appl. Phys., Part 1
41
,
1674
1678
(
2002
).
30.
B.-S.
Lee
,
J. R.
Abelson
,
S. G.
Bishop
,
D.-H.
Kang
,
B-k
Cheong
, and
K.-B.
Kim
, “
Investigation of the optical and electronic properties of Ge2Sb2Te5 phase change material in its amorphous, cubic, and hexagonal phases
,”
J. Appl. Phys.
97
,
093509
(
2005
).
31.
T.
Tsafack
,
E.
Piccinini
,
B.-S.
Lee
,
E.
Pop
, and
M.
Rudan
, “
Electronic, optical and thermal properties of the hexagonal and rocksalt-like Ge2Sb2Te5 chalcogenide from first-principle calculations
,”
J. Appl. Phys.
110
,
063716
(
2011
).
32.
I.
Friedrich
,
V.
Weidenhof
,
W.
Njoroge
,
P.
Franz
, and
M.
Wuttig
, “
Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements
,”
J. Appl. Phys.
87
,
4130
4134
(
2000
).
33.
X.
Liu
,
X.
Li
,
L.
Zhang
,
Y.
Cheng
,
Z.
Yan
,
M.
Xu
,
X.
Han
,
S.
Zhang
,
Z.
Zhang
, and
E.
Ma
, “
New structural picture of the Ge2Sb2Te5 phase-change alloy
,”
Phys. Rev. Lett.
106
,
025501
(
2011
).
34.
B.
Chen
,
G. H.
ten Brink
,
G.
Palasantzas
, and
B. J.
Kooi
, “
Crystallization kinetics of gesbte phase-change nanoparticles resolved by ultrafast calorimetry
,”
J. Phys. Chem. C
121
,
8569
8578
(
2017
).
35.
W.
De Cort
,
J.
Beeckman
,
T.
Claes
,
K.
Neyts
, and
R.
Baets
, “
Wide tuning of silicon-on-insulator ring resonators with a liquid crystal cladding
,”
Opt. Lett.
36
,
3876
3878
(
2011
).
36.
A.
Farmani
, “
Graphene plasmonic: Switching applications
,”
Handbook Graphene: Physics, Chemistry, and Biology
(
Wiley
,
2019
), p.
455
.
37.
L. A.
Shiramin
and
D.
Van Thourhout
, “
Graphene modulators and switches integrated on silicon and silicon nitride waveguide
,”
IEEE J. Sel. Top. Quantum Electron.
23
,
3600107
(
2016
).
38.
F.
Gardes
,
G.
Reed
,
N.
Emerson
, and
C.
Png
, “
A sub-micron depletion-type photonic modulator in silicon on insulator
,”
Opt. Express
13
,
8845
8854
(
2005
).
39.
R. B.
Priti
,
Y.
Xiong
, and
O.
Liboiron-Ladouceur
, “
Efficiency improvement of an O-band SOI-MZI thermo-optic matrix switch
,” in
IEEE Photonics Conference (IPC)
(
IEEE
,
2016
), pp.
823
824
.
40.
N. A.
Mohammed
,
H. S. A.
Elnasr
, and
M. H.
Aly
, “
Performance evaluation and enhancement of 2× 2 Ti: LiNbo3 Mach Zehnder interferometer switch at 1.3 μm and 1.55 μm
,”
Open Electr. Electron. Eng. J.
6
,
36
49
(
2012
).
41.
M.
Zhang
,
K.
Chen
,
W.
Jin
, and
K. S.
Chiang
, “
Electro-optic mode switch based on lithium-niobate Mach–Zehnder interferometer
,”
Appl. Opt.
55
,
4418
4422
(
2016
).
42.
R.
Amin
,
J. B.
Khurgin
, and
V. J.
Sorger
, “
Waveguide-based electro-absorption modulator performance: Comparative analysis
,”
Opt. Express
26
,
15445
15470
(
2018
).
43.
A.
Joushaghani
,
J.
Jeong
,
S.
Paradis
,
D.
Alain
,
J. S.
Aitchison
, and
J. K.
Poon
, “
Wavelength-size hybrid Si-VO2 waveguide electroabsorption optical switches and photodetectors
,”
Opt. Express
23
,
3657
3668
(
2015
).
44.
N.
Dupuis
,
A. V.
Rylyakov
,
C. L.
Schow
,
D. M.
Kuchta
,
C. W.
Baks
,
J. S.
Orcutt
,
D. M.
Gill
,
W. M.
Green
, and
B. G.
Lee
, “
Ultralow crosstalk nanosecond-scale nested 2×2 Mach–Zehnder silicon photonic switch
,”
Opt. Lett.
41
,
3002
3005
(
2016
).
45.
A. M.
Al-Hetar
,
A. B.
Mohammad
,
A. S. M.
Supa'At
, and
Z. A.
Shamsan
, “
MMI-MZI polymer thermo-optic switch with a high refractive index contrast
,”
J. Lightwave Technol.
29
,
171
178
(
2011
).
46.
R. B.
Priti
and
O.
Liboiron-Ladouceur
, “
A broadband rearrangeable non-blocking MZI-based thermo-optic o-band switch in silicon-on-insulator
,” in
Advanced Photonics (IPR, NOMA, Sensors, Networks, SPPCom, PS)
(
Optical Society of America
,
2017
).
47.
J. V.
Campenhout
,
W. M. J.
Green
,
S.
Assefa
, and
Y. A.
Vlasov
, “
Low-power, 2×2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks
,”
Opt. Express
17
,
24020
24029
(
2009
).
48.
L.
Lu
,
S.
Zhao
,
L.
Zhou
,
D.
Li
,
Z.
Li
,
M.
Wang
,
X.
Li
, and
J.
Chen
, “
16x16 non-blocking silicon optical switch based on electro-optic Mach–Zehnder interferometers
,”
Opt. Express
24
,
9295
9307
(
2016
).
49.
L.
Qiao
,
W.
Tang
, and
T.
Chu
, “
Ultra-large-scale silicon optical switches
,” in
IEEE 13th International Conference on Group IV Photonics (GFP)
(
2016
), pp.
1
2
.
50.
L.
Qiao
,
W.
Tang
, and
T.
Chu
, “
32x32 silicon electro-optic switch with built-in monitors and balanced-status units
,”
Sci. Rep.
7
,
42306
(
2017
).

Supplementary Material

You do not currently have access to this content.