The critical condition for expansion/contraction of single Shockley-type stacking faults (1SSFs) was experimentally estimated by monitoring the electroluminescence from 1SSFs in 4H-SiC PiN diodes with different p/n structures while varying the current density and the temperature. The “threshold current density” for expansion/contraction of 1SSF was determined by observing the 1SSF behavior, and it was converted to the “threshold excess carrier density” using the numerical calculation by device simulation. The threshold excess carrier density was almost independent of the diode structures though the threshold current densities were very different among the various diodes, which means that the 1SSF behavior does not depend on the current density but on the excess carrier density. The threshold excess carrier density at room temperature was estimated to be about 4×1014cm3, which agrees with the result calculated by a theoretical model previously proposed. In addition, the conduction type- and the doping concentration-dependences of the threshold excess carrier density were discussed.

1.
M.
Bhatnagar
and
B. J.
Baliga
,
IEEE Trans. Electron Devices
40
,
645
(
1993
).
2.
T.
Kimoto
and
J. A.
Cooper
,
Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications
(
John Wiley & Sons
,
2014
).
3.
T.
Kimoto
,
Jpn. J. Appl. Phys., Part 1
54
,
040103
(
2015
).
4.
J. A.
Cooper
,
M. R.
Melloch
,
R.
Singh
,
A.
Agarwal
, and
J. W.
Palmour
,
IEEE Trans. Electron Devices
49
,
658
(
2002
).
5.
J. P.
Bergman
,
H.
Lendenmann
,
P. Å.
Nilsson
,
U.
Lindefelt
, and
P.
Skytt
,
Mater. Sci. Forum
353-356
,
299
(
2001
).
6.
M.
Skowronski
and
S.
Ha
,
J. Appl. Phys.
99
,
011101
(
2006
).
7.
M.
Dudley
,
Y.
Chen
,
X. R.
Huang
, and
R.
Ma
,
Mater. Sci. Forum
600-603
,
261
(
2008
).
8.
H.
Lendenmann
,
F.
Dahlquist
,
N.
Johansson
,
R.
Söderholm
,
P. Å.
Nilsson
,
J. P.
Bergman
, and
P.
Skytt
,
Mater. Sci. Forum
353-356
,
727
(
2001
).
9.
R. E.
Stahlbush
,
Q.
Zhang
,
A.
Agarwal
, and
N. A.
Mahadik
,
Mater. Sci. Forum
717-720
,
387
(
2012
).
10.
J. D.
Caldwell
,
R. E.
Stahlbush
,
E. A.
Imhoff
,
K. D.
Hobart
,
M. J.
Tadjer
,
Q.
Zhang
, and
A.
Agarwal
,
J. Appl. Phys.
106
,
044504
(
2009
).
11.
R.
Ishii
,
T.
Miyanagi
,
I.
Kamata
,
H.
Tsuchida
,
K.
Nakayama
, and
Y.
Sugawara
,
Mater. Sci. Forum
556-557
,
251
(
2007
).
12.
P.
Pirouz
,
J. L.
Demenet
, and
M. H.
Hong
,
Philos. Mag. A
81
,
1207
(
2001
).
13.
H.
Jacobson
,
J.
Birch
,
R.
Yakimova
,
M.
Syväjärvi
,
J. P.
Bergman
,
A.
Ellison
,
T.
Tuomi
, and
E.
Janzén
,
J. Appl. Phys.
91
,
6354
(
2002
).
14.
T.
Miyanagi
,
I.
Kamata
,
H.
Tsuchida
,
T.
Nakamura
,
K.
Nakayama
,
R.
Ishii
, and
Y.
Sugawara
,
Appl. Phys. Lett.
89
,
062104
(
2006
).
15.
J. D.
Caldwell
,
R. E.
Stahlbush
,
K. D.
Hobart
,
O. J.
Glembocki
, and
K. X.
Liu
,
Appl. Phys. Lett.
90
,
143519
(
2007
).
16.
J. D.
Caldwell
,
K. X.
Liu
,
M. J.
Tadjer
,
O. J.
Glembocki
,
R. E.
Stahlbush
,
K. D.
Hobart
, and
F.
Kub
,
J. Electron. Mater.
36
,
318
(
2007
).
17.
J. D.
Caldwell
,
O. J.
Glembocki
,
R. E.
Stahlbush
, and
K. D.
Hobart
,
J. Electron. Mater.
37
,
699
(
2008
).
18.
N. A.
Mahadik
,
R. E.
Stahlbush
,
J. D.
Caldwell
, and
K. D.
Hobart
,
Mater. Sci. Forum
717-720
,
391
(
2012
).
19.
A.
Okada
,
J.
Nishio
,
R.
Iijima
,
C.
Ota
,
A.
Goryu
,
M.
Miyazato
,
M.
Ryo
,
T.
Shinohe
,
M.
Miyajima
,
T.
Kato
,
Y.
Yonezawa
, and
H.
Okumura
,
Jpn. J. Appl. Phys., Part 1
57
,
061301
(
2018
).
20.
T.
Tawara
,
S.
Matsunaga
,
T.
Fujimoto
,
M.
Ryo
,
M.
Miyazato
,
T.
Miyazawa
,
K.
Takenaka
,
M.
Miyajima
,
A.
Otsuki
,
Y.
Yonezawa
,
T.
Kato
,
H.
Okumura
,
T.
Kimoto
, and
H.
Tsuchida
,
J. Appl. Phys.
123
,
25707
(
2018
).
21.
K.
Maeda
,
R.
Hirano
,
Y.
Sato
, and
M.
Tajima
,
Mater. Sci. Forum
725
,
35
40
(
2012
).
22.
Y.
Mannen
,
K.
Shimada
,
K.
Asada
, and
N.
Ohtani
,
J. Appl. Phys.
125
,
085705
(
2019
).
23.
A.
Iijima
and
T.
Kimoto
,
J. Appl. Phys.
126
,
105703
(
2019
).
24.
S. G.
Sridhara
,
F. H. C.
Carlsson
,
J. P.
Bergman
, and
E.
Janzén
,
Appl. Phys. Lett.
79
,
3944
(
2001
).
25.
T.
Kimoto
,
A.
Iijima
,
H.
Tsuchida
,
T.
Miyazawa
,
T.
Tawara
,
A.
Otsuki
,
T.
Kato
, and
Y.
Yonezawa
, in
Proceedings of 2017 IEEE International Reliability Physics Symposium
, Monterey (
2017
), p.
2A1.1
.
26.
A.
Iijima
,
I.
Kamata
,
H.
Tsuchida
,
J.
Suda
, and
T.
Kimoto
,
Philos. Mag.
97
,
2736
(
2017
).
27.
A.
Tanaka
,
H.
Matsuhata
,
N.
Kawabata
,
D.
Mori
,
K.
Inoue
,
M.
Ryo
,
T.
Fujimoto
,
T.
Tawara
,
M.
Miyazato
,
M.
Miyajima
,
K.
Fukuda
,
A.
Ohtsuki
,
T.
Kato
,
H.
Tsuchida
,
Y.
Yonezawa
, and
T.
Kimoto
,
J. Appl. Phys.
119
,
095711
(
2016
).
28.
S.
Ha
,
P.
Mieszkowski
,
M.
Skowronski
, and
L. B.
Rowland
,
J. Cryst. Growth
244
,
257
266
(
2002
).
29.
S.
Hayashi
,
T.
Naijo
,
T.
Yamashita
,
M.
Miyazato
,
M.
Ryo
,
H.
Fujisawa
,
M.
Miyajima
,
J.
Senzaki
,
T.
Kato
,
Y.
Yonezawa
,
K.
Kojima
, and
H.
Okumura
,
Appl. Phys. Express
10
,
081201
(
2017
).
30.
M.
Nakamura
and
M.
Yoshimoto
,
Jpn. J. Appl. Phys., Part 1
49
,
010202
(
2010
).
31.
T.
Kimoto
,
H.
Niwa
,
T.
Okuda
,
E.
Saito
,
Y.
Zhao
,
S.
Asada
, and
J.
Suda
,
J. Phys. D
51
,
363001
(
2018
).
You do not currently have access to this content.