Composite phase change materials consisting of a high-latent-heat phase change material (PCM) embedded in a high-thermal-conductivity matrix are desirable for thermally buffering pulsed heat loads via rapid absorption and release of thermal energy at a constant temperature. This paper reports a composite PCM thermal buffer consisting of a Field's metal PCM having high volumetric latent heat (315 MJ/m3) embedded in a copper (Cu) matrix having high intrinsic thermal conductivity [384 W/(m·K)]. We demonstrate thermal buffer samples fabricated with Cu volume fractions from 0.05 to 0.2 and sample thicknesses ranging between 1 mm and 4 mm. Experiments coupled with finite element method simulations were used to determine the figures of merit (FOMs), cooling capacity ηeff, energy density Eeff, effective thermal conductivity keff, and the buffering time constant τ. The cooling capacity was measured to be as high as ηeff = 72 ± 4 kJ/(m2·K1/2·s1/2) for the 1.45 mm thick thermal buffer sample having a Cu volume fraction of 0.13, significantly higher than theoretical values for aluminum–paraffin composites [45 kJ/(m2·K1/2·s1/2)] or pure paraffin wax [8 kJ/(m2·K1/2·s1/2)]. Our work develops design guidelines for high-FOM thermal buffer devices for pulsed heat load thermal management.

1.
S.
Krishnan
,
S. V.
Garimella
, and
S. S.
Kang
,
IEEE Trans. Compon. Packag. Technol.
28
,
281
(
2005
).
2.
A.
Stupar
,
U.
Drofenik
, and
J. W.
Kolar
, in
6th International Conference Integrated Power Electronic Systems
(
Nuremberg
,
2010
), pp.
16
18
.
3.
Y.
Ganatra
,
J.
Ruiz
,
J. A.
Howarter
, and
A.
Marconnet
,
Int. J. Therm. Sci.
129
,
358
(
2018
).
4.
J.
Ruiz
,
Y.
Ganatra
,
A.
Bruce
,
J.
Howarter
, and
A. M.
Marconnet
, in
16th IEEE ITHERM Conference
(
Orlando
,
2017
), pp.
384
389
.
5.
X.
Yi
and
K. S.
Haran
, in
AIAA Propulsion Energy Forum
(
Indianapolis
,
2019
), pp.
1
10
.
6.
R.
Kandasamy
,
X. Q.
Wang
, and
A. S.
Mujumdar
,
Appl. Therm. Eng.
28
,
1047
(
2008
).
7.
M. T.
Barako
,
S.
Lingamneni
,
J. S.
Katz
,
T.
Liu
,
K. E.
Goodson
, and
J.
Tice
,
J. Appl. Phys.
124
,
145103
(
2018
).
8.
G.
Wehmeyer
,
T.
Yabuki
,
C.
Monachon
,
J.
Wu
, and
C.
Dames
,
Appl. Phys. Rev.
4
,
041304
(
2017
).
9.
F.
Agyenim
,
N.
Hewitt
,
P.
Eames
, and
M.
Smyth
,
Renewable Sustainable Energy Rev.
14
,
615
(
2010
).
10.
P. J.
Shamberger
and
T. S.
Fisher
,
Int. J. Heat Mass Transfer
117
,
1205
(
2018
).
11.
A.
Stupar
,
U.
Drofenik
, and
J. W.
Kolar
,
IEEE Trans. Compon., Packag. Manuf. Technol.
2
,
102
(
2012
).
12.
P.
Zhang
,
X.
Xiao
, and
Z. W.
Ma
,
Appl. Energy
165
,
472
(
2016
).
13.
L. C.
Wei
and
J. A.
Malen
,
Appl. Energy
181
,
224
(
2016
).
14.
A.
Ricklefs
,
A. M.
Thiele
,
G.
Falzone
,
G.
Sant
, and
L.
Pilon
,
Int. J. Heat Mass Transfer
104
,
71
(
2017
).
15.
A. L.
Cottrill
,
A. T.
Liu
,
Y.
Kunai
,
V. B.
Koman
,
A.
Kaplan
,
S. G.
Mahajan
,
P.
Liu
,
A. R.
Toland
, and
M. S.
Strano
,
Nat. Commun.
9
,
664
(
2018
).
16.
S.
Ramakrishnan
,
X.
Wang
,
J.
Sanjayan
,
E.
Petinakis
, and
J.
Wilson
,
Sol. Energy
158
,
626
(
2017
).
17.
T. J.
Lu
,
Int. J. Heat Mass Transfer
43
,
2245
(
2000
).
18.
P. J.
Shamberger
,
J. Heat Transfer
138
,
024502
(
2015
).
19.
A.
Lipchitz
and
G.
Harvel
, in
23rd International Conference Nuclear Engineering
(Chiba,
2015
).
20.
O. P.
Arora
and
J. H.
Brady
, U.S. patent 4,623,514 (18 November
1986
).
21.
S.
Torquato
,
Random Heterogeneous Materials
(
Springer Science + Business Media, LLC
,
2001
).
22.
A. M.
Khounsary
,
D.
Chojnowski
, and
L.
Assoufid
,
Proc. SPIE
3151
,
45
51
(
1997
).
23.
T. L.
Bergman
,
A. S.
Lavine
,
F. P.
Incropera
, and
D. P.
DeWitt
,
Fundamentals of Heat and Mass Transfer
(
John Wiley & Sons, Inc.
,
2011
).
24.
E. M.
Dede
,
S. N.
Joshi
, and
F.
Zhou
,
J. Mech. Des.
137
,
111403
(
2015
).

Supplementary Material

You do not currently have access to this content.