Host-guest structures are used in most state-of-the-art organic light-emitting devices, with the host transporting charge and confining excitons on the guest. While the host often plays a critical role in achieving high efficiency and stability, predicting and understanding these effects is a persistent design challenge which slows the discovery of new active materials. Closely related host molecules, which differ only by several functional groups, often show drastically different degradation behavior. Here, we explore this observation for the archetypical carbazole hosts 4′-bis(N-carbazolyl)-1,1′-biphenyl (CBP) and 4,4′-bis(carbazole-9-yl)-2,2′-dimethylbiphenyl (CDBP). While devices based on these hosts show similar efficiencies, CDBP-based devices show a tenfold lower lifetime than CBP devices when paired with phosphorescent or fluorescent emitters. Using optically and electrically pumped degradation tests, mass spectrometry, compositional analysis, and low-temperature phosphorescence spectroscopy, the lifetimes of devices containing CDBP are shown to correlate with the formation of intermolecular triplet excimer states. These findings suggest that candidate host molecules should be screened for excimer formation as host excimers may aggravate device degradation and lower device stability.

1.
S.
Scholz
,
D.
Kondakov
,
B.
Lüssem
, and
K.
Leo
,
Chem. Rev.
115
,
8449
(
2015
).
3.
H.
Sasabe
and
J.
Kido
,
J. Mater. Chem. C
1
,
1699
(
2013
).
4.
C.
Adachi
,
M. A.
Baldo
,
M. E.
Thompson
, and
S. R.
Forrest
,
J. Appl. Phys.
90
,
5048
(
2001
).
5.
Y.
Tao
,
C.
Yang
, and
J.
Qin
,
Chem. Soc. Rev.
40
,
2943
(
2011
).
6.
S.
Tokito
,
T.
Iijima
,
Y.
Suzuri
,
H.
Kita
,
T.
Tsuzuki
, and
F.
Sato
,
Appl. Phys. Lett.
83
,
569
(
2003
).
7.
R. J.
Holmes
,
S. R.
Forrest
,
Y.-J.
Tung
,
R. C.
Kwong
,
J. J.
Brown
,
S.
Garon
, and
M. E.
Thompson
,
Appl. Phys. Lett.
82
,
2422
(
2003
).
8.
A.
Chaskar
,
H. F.
Chen
, and
K. T.
Wong
,
Adv. Mater.
23
,
3876
(
2011
).
9.
S. T.
Hoffmann
,
P.
Schrögel
,
M.
Rothmann
,
R. Q.
Albuquerque
,
P.
Strohriegl
, and
A.
Köhler
,
J. Phys. Chem. B
115
,
414
(
2011
).
10.
A.
Ya Freidzon
,
A. A.
Safonov
,
A. A.
Bagaturyants
,
D. N.
Krasikov
,
B. V.
Potapkin
,
A. A.
Osipov
,
A. V.
Yakubovich
, and
O.
Kwon
,
J. Phys. Chem. C
121
(
40
),
22422
22433
(
2017
).
11.
Q.
Wang
,
B.
Sun
, and
H.
Aziz
,
Adv. Funct. Mater.
24
,
2975
(
2014
).
12.
H.
Yu
,
Y.
Zhang
,
Y. J.
Cho
, and
H.
Aziz
,
ACS Appl. Mater. Interfaces
9
,
14145
(
2017
).
13.
T.
Setzer
,
P.
Friederich
,
V.
Meded
,
W.
Wenzel
,
C.
Lennartz
, and
A.
Dreuw
,
ChemPhysChem
19
,
2961
(
2018
).
14.
S. A.
Bagnich
,
S.
Athanasopoulos
,
A.
Rudnick
,
P.
Schroegel
,
I.
Bauer
,
N. C.
Greenham
,
P.
Strohriegl
, and
A.
,
J. Phys. Chem. C
119
,
2380
2387
(
2015
).
15.
D. F.
O'Brien
,
M. A.
Baldo
,
M. E.
Thompson
, and
S. R.
Forrest
,
Appl. Phys. Lett.
74
,
442
(
1999
).
16.
M. A.
Baldo
,
S.
Lamansky
,
P. E.
Burrows
,
M. E.
Thompson
, and
S. R.
Forrest
,
Appl. Phys. Lett.
75
,
4
(
1999
).
17.
S. A.
Bagnich
,
A.
Rudnick
,
P.
Schroegel
,
P.
Strohriegl
, and
A.
Köhler
,
Philos. Trans. R. Soc., A
373
,
20140446
(
2015
).
18.
R.
Seifert
,
I.
Rabelo de Moraes
,
S.
Scholz
,
M. C.
Gather
,
B.
Lüssem
, and
K.
Leo
,
Org. Electron.
14
,
115
(
2013
).
19.
S.
Schmidbauer
,
A.
Hohenleutner
, and
B.
König
,
Adv. Mater.
25
,
2114
(
2013
).
20.
S.
Scholz
,
K.
Walzer
, and
K.
Leo
,
Adv. Funct. Mater.
18
,
2541
(
2008
).
21.
C.
Jeong
,
C.
Coburn
,
M.
Idris
,
Y.
Li
,
P. I.
Djurovich
,
M. E.
Thompson
, and
S. R.
Forrest
,
Org. Electron.
64
,
15
(
2019
).
22.
J. S.
Bangsund
,
K. W.
Hershey
, and
R. J.
Holmes
,
ACS Appl. Mater. Interfaces
10
,
5693
(
2018
).
23.
K. W.
Hershey
,
J.
Suddard-Bangsund
,
G.
Qian
, and
R. J.
Holmes
,
Appl. Phys. Lett.
111
,
113301
(
2017
).
24.
J. S.
Bangsund
,
K. W.
Hershey
,
D. C. K.
Rathwell
,
H. Y.
Na
,
J. H.
Jeon
,
P.
Trefonas
, and
R. J.
Holmes
,
J. Soc. Inf. Disp.
434–441
,
761
(
2019
).
25.
J.
Sohn
,
D.
Ko
,
H.
Lee
,
J.
Han
,
S. D.
Lee
, and
C.
Lee
,
Org. Electron.
70
,
286
(
2019
).
26.
R.
Meerheim
,
K.
Walzer
,
M.
Pfeiffer
, and
K.
Leo
,
Appl. Phys. Lett.
89
,
061111
(
2006
).
27.
W.
Song
and
J. Y.
Lee
,
Adv. Opt. Mater.
5
,
1600901
(
2017
).
28.
D.
Jacquemin
and
D.
Escudero
,
Chem. Sci.
8
,
7844
(
2017
).
29.
D. Y.
Kondakov
,
W. C.
Lenhart
, and
W. F.
Nichols
,
J. Appl. Phys.
101
,
024512
(
2007
).
30.
N.
Lin
,
J.
Qiao
,
L.
Duan
,
L.
Wang
, and
Y.
Qiu
,
J. Phys. Chem. C
118
,
7569
(
2014
).
31.
I. R.
de Moraes
,
S.
Scholz
,
B.
Lüssem
, and
K.
Leo
,
Org. Electron.
12
,
341
(
2011
).
32.
S.
Reineke
,
G.
Schwartz
,
K.
Walzer
, and
K.
Leo
,
Phys. Status Solidi RRL
3
,
67
(
2009
).
33.
S.
Reineke
,
G.
Schwartz
,
K.
Walzer
,
M.
Falke
, and
K.
Leo
,
Appl. Phys. Lett.
94
,
163305
(
2009
).
34.
D.
Rai
and
R. J.
Holmes
,
J. Mater. Chem. C
7
,
5695
(
2019
).
35.
J.
Lee
,
C.
Jeong
,
T.
Batagoda
,
C.
Coburn
,
M. E.
Thompson
, and
S. R.
Forrest
,
Nat. Commun.
8
,
15566
(
2017
).

Supplementary Material

You do not currently have access to this content.