Ferroelectricity has been demonstrated in epitaxial 7%Y-doped HfO2 (0.07YO1.5–0.93HfO2, YHO7) films grown by the RF magnetron sputtering method at room temperature without any subsequent annealing. The x-ray diffraction patterns of such films suggested that the decrease in RF power and in the partial oxygen pressure changes the crystal structures of the films from the monoclinic phase to the tetragonal/orthorhombic phase. Clear polarization-electric-field (PE) hysteresis loops were observed for these epitaxial films with the tetragonal/orthorhombic phase. The obtained remanent polarization (Pr) and coercive field (Ec) values were 14.5 and 12.8 μC/cm2 and 2300 and 2200 kV/cm for the epitaxial films on (111) indium tin oxide (ITO)//(111) yttria-stabilized zirconia (YSZ) and (100)ITO//(100)YSZ substrates, respectively. Moreover, ferroelectricity was also observed in room-temperature-deposited polycrystalline YHO7 films prepared on Pt/TiOx/SiO2/(100)Si, crystallized ITO/soda glass, and amorphous ITO/polyethylene terephthalate substrates, namely, crystalline ferroelectric HfO2-based films were prepared at room temperature on various substrates, including organic flexible substrates, by using the RF magnetron sputtering method. The present results open a path to novel applications of ferroelectric HfO2-based films such as ferroelectric flexible memory.

2.
P.
Muralt
,
J. Micromech. Microeng.
10
,
136
(
2000
).
3.
I.
Bretos
,
R.
Jiménez
,
A.
Wu
,
A. I.
Kingon
, and
P. M.
Vilarinho
,
Adv. Mater.
26
,
1405
(
2014
).
4.
C. K.
Kwok
and
S. B.
Desu
,
J. Mater. Res.
8
,
339
(
1993
).
5.
M. L.
Calzada
,
I.
Bretos
,
R.
Jimønez
,
H.
Guillon
, and
L.
Pardo
,
Adv. Mater.
16
,
1620
(
2004
).
6.
T. S.
Böscke
,
J.
Müller
,
D.
Bräuhaus
,
U.
Schröder
, and
U.
Böttger
,
Appl. Phys. Lett.
99
,
102903
(
2011
).
7.
J.
Müller
,
P.
Polakowski
,
S.
Mueller
, and
T.
Mikolajick
,
ECS J. Solid State Sci. Technol.
4
,
N30
(
2015
).
8.
J. H.
Choi
,
Y.
Mao
, and
J. P.
Chang
,
Mater. Sci. Eng., R
72
,
97
(
2011
).
9.
K. C.
Das
,
S. P.
Ghosh
,
N.
Tripathy
,
D. H.
Kim
,
T. I.
Lee
,
J. M.
Myoung
, and
J. P.
Kar
,
Ceram. Int.
42
,
138
(
2016
).
10.
R. K.
Jain
,
Y. K.
Gautam
,
V.
Dave
,
A. K.
Chawla
, and
R.
Chandra
,
Appl. Surf. Sci.
283
,
332
(
2013
).
11.
T.
Mimura
,
T.
Shimizu
,
T.
Kiguchi
,
A.
Akama
,
T. J.
Konno
,
Y.
Katsuya
,
O.
Sakata
, and
H.
Funakubo
,
Jpn. J. Appl. Phys., Part 1
58
,
SBBB09
(
2019
).
12.
T. D.
Huan
,
V.
Sharma
,
G. A.
Rossetti
, and
R.
Ramprasad
,
Phys. Rev. B
90
,
064111
(
2014
).
13.
X.
Sang
,
E. D.
Grimley
,
T.
Schenk
,
U.
Schroeder
, and
J. M.
Lebeau
,
Appl. Phys. Lett.
106
,
162905
(
2015
).
14.
T.
Shimizu
,
K.
Katayama
,
T.
Kiguchi
,
A.
Akama
,
T. J.
Konno
, and
H.
Funakubo
,
Appl. Phys. Lett.
107
,
032910
(
2015
).
15.
M.
Hyuk Park
,
H.
Joon Kim
,
Y.
Jin Kim
,
W.
Lee
,
T.
Moon
, and
C.
Seong Hwang
,
Appl. Phys. Lett.
102
,
242905
(
2013
).
16.
S.
Migita
,
H.
Ota
,
H.
Yamada
,
K.
Shibuya
,
A.
Sawa
, and
A.
Toriumi
,
Jpn. J. Appl. Phys., Part 1
57
,
04FB01
(
2018
).
17.
A.
Pal
,
V. K.
Narasimhan
,
S.
Weeks
,
K.
Littau
,
D.
Pramanik
, and
T.
Chiang
,
Appl. Phys. Lett.
110
,
022903
(
2017
).
18.
M. H.
Park
,
H. J.
Kim
,
G.
Lee
,
J.
Park
,
Y. H.
Lee
,
Y. J.
Kim
,
T.
Moon
,
K.
Do Kim
,
S. D.
Hyun
,
H. W.
Park
,
H. J.
Chang
,
J. H.
Choi
, and
C. S.
Hwang
,
Appl. Phys. Rev.
6
,
041403
(
2019
).
19.
Y.
Zhou
,
Y. K.
Zhang
,
Q.
Yang
,
J.
Jiang
,
P.
Fan
,
M.
Liao
, and
Y. C.
Zhou
,
Comput. Mater. Sci.
167
,
143
(
2019
).
20.
T.
Mittmann
,
M.
Materano
,
P. D.
Lomenzo
,
M. H.
Park
,
I.
Stolichnov
,
M.
Cavalieri
,
C.
Zhou
,
C. C.
Chung
,
J. L.
Jones
,
T.
Szyjka
,
M.
Müller
,
A.
Kersch
,
T.
Mikolajick
, and
U.
Schroeder
,
Adv. Mater. Interfaces
6
,
1901528
(
2019
).
21.
U.
Schroeder
,
E.
Yurchuk
,
J.
Müller
,
D.
Martin
,
T.
Schenk
,
P.
Polakowski
,
C.
Adelmann
,
M. I.
Popovici
,
S. V.
Kalinin
, and
T.
Mikolajick
,
Jpn. J. Appl. Phys., Part 1
53
,
08LE02
(
2014
).
22.
T.
Olsen
,
U.
Schröder
,
S.
Müller
,
A.
Krause
,
D.
Martin
,
A.
Singh
,
J.
Müller
,
M.
Geidel
, and
T.
Mikolajick
,
Appl. Phys. Lett.
101
,
082905
(
2012
).
23.
M.
Hoffmann
,
U.
Schroeder
,
T.
Schenk
,
T.
Shimizu
,
H.
Funakubo
,
O.
Sakata
,
D.
Pohl
,
M.
Drescher
,
C.
Adelmann
,
R.
Materlik
,
A.
Kersch
, and
T.
Mikolajick
,
J. Appl. Phys.
118
,
072006
(
2015
).
24.
Q.
Luo
,
H.
Ma
,
H.
Su
,
K.
Xue
,
R.
Cao
,
Z.
Gao
, and
J.
Yu
,
IEEE Electron Device Lett.
40
,
570
(
2019
).
25.
T.
Suzuki
,
T.
Shimizu
,
T.
Mimura
,
H.
Uchida
, and
H.
Funakubo
,
Jpn. J. Appl. Phys., Part 1
57
,
11UF15
(
2018
).
26.
K.
Takada
,
Y.
Saho
,
T.
Yoshimura
, and
N.
Fujimura
,
Jpn. J. Appl. Phys., Part 1
58
,
SLLB03
(
2019
).
27.
S. B.
Amor
,
B.
Rogier
,
G.
Baud
,
M.
Jacquet
, and
M.
Nardin
,
Mater. Sci. Eng. B
57
,
28
(
1998
).
28.
T.
Mimura
,
T.
Shimizu
, and
H.
Funakubo
,
Appl. Phys. Lett.
115
,
032901
(
2019
).
29.
D. W.
Stacy
and
T. R.
Wilder
,
J. Am. Ceram. Soc.
58
,
285
(
1975
).
30.
M.
Yashima
,
H.
Takahashi
,
K.
Ohtake
,
T.
Hirose
,
M.
Kakihana
,
H.
Arashi
,
Y.
Ikuma
,
Y.
Suzuki
, and
M.
Yoshimura
,
J. Phys. Chem. Solids
57
,
289
(
1996
).
31.
M. H.
Park
,
Y. H.
Lee
, and
C. S.
Hwang
,
Nanoscale
11
,
19477
(
2019
).
32.
T.
Mimura
,
K.
Katayama
,
T.
Shimizu
,
H.
Uchida
,
T.
Kiguchi
,
A.
Akama
,
T. J.
Konno
,
O.
Sakata
, and
H.
Funakubo
,
Appl. Phys. Lett.
109
,
052903
(
2016
).
33.
T.
Shimizu
,
T.
Mimura
,
T.
Kiguchi
,
T.
Shiraishi
,
T.
Konno
,
Y.
Katsuya
,
O.
Sakata
, and
H.
Funakubo
,
Appl. Phys. Lett.
113
,
212901
(
2018
).
34.
P.
Li
,
J.
Carroll
, and
J.
Mazumder
,
J. Phys. D: Appl. Phys.
36
,
1605
(
2003
).
35.
T. Q.
Li
,
S.
Noda
,
Y.
Tsuji
,
T.
Ohsawa
, and
H.
Komiyama
,
J. Vac. Sci. Technol., A
20
,
583
(
2002
).

Supplementary Material

You do not currently have access to this content.