We experimentally demonstrate tight focusing of a spin wave beam excited in extended nanometer-thick films of yttrium iron garnet by a simple microscopic antenna functioning as a single-slit near-field lens. We show that the focal distance and the minimum transverse width of the focal spot can be controlled in a broad range by varying the frequency/wavelength of spin waves and the antenna geometry. The experimental data are in good agreement with the results of numerical simulations. Our findings provide a simple solution for the implementation of magnonic nanodevices requiring a local concentration of the spin-wave energy.

1.
Y.
Sun
,
Y. Y.
Song
,
H.
Chang
,
M.
Kabatek
,
M.
Jantz
,
W.
Schneider
,
M.
Wu
,
H.
Schultheiss
, and
A.
Hoffmann
,
Appl. Phys. Lett.
101
,
152405
(
2012
).
2.
O.
d'Allivy Kelly
,
A.
Anane
,
R.
Bernard
,
J.
Ben Youssef
,
C.
Hahn
,
A. H.
Molpeceres
,
C.
Carretero
,
E.
Jacquet
,
C.
Deranlot
,
P.
Bortolotti
,
R.
Lebourgeois
,
J.-C.
Mage
,
G.
de Loubens
,
O.
Klein
,
V.
Cros
, and
A.
Fert
,
Appl. Phys. Lett.
103
,
082408
(
2013
).
3.
C.
Hauser
,
T.
Richter
,
N.
Homonnay
,
C.
Eisenschmidt
,
M.
Qaid
,
H.
Deniz
,
D.
Hesse
,
M.
Sawicki
,
S. G.
Ebbinghaus
, and
G.
Schmidt
,
Sci. Rep.
6
,
20827
(
2016
).
4.
S.
Neusser
and
D.
Grundler
,
Adv. Mater.
21
,
2927
(
2009
).
5.
V. V.
Kruglyak
,
S. O.
Demokritov
, and
D.
Grundler
,
J. Phys. D: Appl. Phys.
43
,
264001
(
2010
).
6.
A. V.
Chumak
,
V. I.
Vasyuchka
,
A. A.
Serga
, and
B.
Hillebrands
,
Nat. Phys.
11
,
453
(
2015
).
7.
S.
Li
,
W.
Zhang
,
J.
Ding
,
J. E.
Pearson
,
V.
Novosad
, and
A.
Hoffmann
,
Nanoscale
8
,
388
(
2016
).
8.
Q.
Wang
,
B.
Heinz
,
R.
Verba
,
M.
Kewenig
,
P.
Pirro
,
M.
Schneider
,
T.
Meyer
,
B.
Lägel
,
C.
Dubs
,
T.
Brächer
, and
A. V.
Chumak
,
Phys. Rev. Lett.
122
,
247202
(
2019
).
9.
V. E.
Demidov
and
S. O.
Demokritov
,
IEEE Trans. Mag.
51
,
1
(
2015
).
10.
G.
Csaba
,
A.
Papp
, and
W.
Porod
,
J. Appl. Phys.
115
,
17C741
(
2014
).
11.
J.-N.
Toedt
,
M.
Mundkowski
,
D.
Heitmann
,
S.
Mendach
, and
W.
Hansen
,
Sci. Rep.
6
,
33169
(
2016
).
12.
O.
Dzyapko
,
I. V.
Borisenko
,
V. E.
Demidov
,
W.
Pernice
, and
S. O.
Demokritov
,
Appl. Phys. Lett.
109
,
232407
(
2016
).
13.
J.
Gräfe
,
M.
Decker
,
K.
Keskinbora
,
M.
Noske
,
P.
Gawronski
,
H.
Stoll
,
C. H.
Back
,
E. J.
Goering
, and
G.
Schütz
, arXiv:1707.03664 (
2017
).
14.
N. J.
Whitehead
,
S. A. R.
Horsley
,
T. G.
Philbin
, and
V. V.
Kruglyak
,
Appl. Phys. Lett.
113
,
212404
(
2018
).
15.
N.
Loayza
,
M. B.
Jungfleisch
,
A.
Hoffmann
,
M.
Bailleul
, and
V.
Vlaminck
,
Phys. Rev. B
98
,
144430
(
2018
).
16.
M.
Vogel
,
B.
Hillebrands
, and
G.
von Freymann
, arXiv:1906.02301 (
2019
).
17.
H.
Yu
,
O.
d' Allivy Kelly
,
V.
Cros
,
R.
Bernard
,
P.
Bortolotti
,
A.
Anane
,
F.
Brandl
,
F.
Heimbach
, and
D.
Grundler
,
Nat. Commun.
7
,
11255
(
2016
).
18.
C.
Liu
,
J.
Chen
,
T.
Liu
,
F.
Heimbach
,
H.
Yu
,
Y.
Xiao
,
J.
Hu
,
M.
Liu
,
H.
Chang
,
T.
Stueckler
,
S.
Tu
,
Y.
Zhang
,
Y.
Zhang
,
P.
Gao
,
Z.
Liao
,
D.
Yu
,
K.
Xia
,
N.
Lei
,
W.
Zhao
, and
M.
Wu
,
Nat. Commun.
9
,
738
(
2018
).
19.
M.
Madami
,
Y.
Khivintsev
,
G.
Gubbiotti
,
G.
Dudko
,
A.
Kozhevnikov
,
V.
Sakharov
,
A.
Stal'makhov
,
A.
Khitun
, and
Y.
Filimonov
,
Appl. Phys. Lett.
113
,
152403
(
2018
).
20.
E.
Albisetti
,
S.
Tacchi
,
R.
Silvani
,
G.
Scaramuzzi
,
S.
Finizio
,
S.
Wintz
,
J.
Raabe
,
G.
Carlotti
,
R.
Bertacco
,
E.
Riedo
, and
D.
Petti
, arXiv:1902.09420 (
2019
).
21.
F.
Heussner
,
G.
Talmelli
,
M.
Geilen
,
B.
Heinz
,
T.
Brächer
,
T.
Meyer
,
F.
Ciubotaru
,
C.
Adelmann
,
K.
Yamamoto
,
A. A.
Serga
,
B.
Hillebrands
, and
P.
Pirro
, arXiv:1904.12744 (
2019
).
22.
V. E.
Demidov
,
M. P.
Kostylev
,
K.
Rott
,
P.
Krzysteczko
,
G.
Reiss
, and
S. O.
Demokritov
,
Phys. Rev. B
83
,
054408
(
2011
).
23.
V. E.
Demidov
,
S. O.
Demokritov
,
K.
Rott
,
P.
Krzysteczko
, and
G.
Reiss
,
Appl. Phys. Lett.
91
,
252504
(
2007
).
24.
V. E.
Demidov
,
S. O.
Demokritov
,
K.
Rott
,
P.
Krzysteczko
, and
G.
Reiss
,
Phys. Rev. B
77
,
064406
(
2008
).
25.
W. B.
Case
,
E.
Sadurni
, and
W. P.
Schleich
,
Opt. Express
20
,
27253
(
2012
).
26.
G.
Vitrant
,
S.
Zaiba
,
B. Y.
Vineeth
,
T.
Kouriba
,
O.
Ziane
,
O.
Stéphan
,
J.
Bosson
, and
P. L.
Baldeck
,
Opt. Express
20
,
26542
(
2012
).
27.
D.
Weisman
,
S.
Fu
,
M.
Gonçalves
,
L.
Shemer
,
J.
Zhou
,
W. P.
Schleich
, and
A.
Arie
,
Phys. Rev. Lett.
118
,
154301
(
2017
).
28.
E.
Hecht
,
Optics
, 5th ed. (
Pearson
,
Harlow
,
2017
).
29.
The similarity between a narrow (narrower than half of the wavelength) strip antenna and one-dimensional slit follows from the Huygens–Fresnel principle.
In both cases, the appearing patterns can be considered as a result of the interference of secondary wavelets radiated by point sources located on a straight wavefront of finite length.
30.
We note that the utilization of excitation structures based on coplanar lines with smoothly changing geometrical parameters can help to improve the overall microwave-to-spin wave conversion efficiency
. Such structures have been considered in
P.
Gruszecki
,
M.
Kasprzak
,
A. E.
Serebryannikov
,
M.
Krawczyk
, and
W.
Śmigaj
,
Sci. Rep.
6
,
22367
(
2016
);
H. S.
Körner
,
J.
Stigloher
, and
C. H.
Back
,
Phys. Rev. B
96
,
100401(R)
(
2017
).
31.
B. A.
Kalinikos
,
IEE Proc. H
127
,
4
(
1980
).
32.
A.
Vansteenkiste
,
J.
Leliaert
,
M.
Dvornik
,
M.
Helsen
,
F.
Garcia-Sanchez
, and
B.
Van Waeyenberge
,
AIP Adv.
4
,
107133
(
2014
).
33.

The calculations were performed at f = 3.8 GHz. The static magnetic field was increased to H = 2900 Oe to obtain the same spin-wave wavelength of 0.6 μm, as in the case of the in-plane magnetized film.

34.
V. E.
Demidov
,
S. O.
Demokritov
,
D.
Birt
,
B.
O'Gorman
,
M.
Tsoi
, and
X.
Li
,
Phys. Rev. B
80
,
014429
(
2009
).
You do not currently have access to this content.