Thermally varying hysteretic gate operation in few-layer ReS2 and MoS2 back gate field effect transistors (FETs) is studied and compared for memory applications. Clockwise hysteresis at room temperature and anti-clockwise hysteresis at higher temperature (373 K for ReS2 and 400 K for MoS2) are accompanied by step-like jumps in transfer curves for both forward and reverse voltage sweeps. Hence, a step-like conductance (STC) crossover hysteresis between the transfer curves for the two sweeps is observed at high temperature. Furthermore, memory parameters such as the RESET-to-WRITE window and READ window are defined and compared for clockwise hysteresis at low temperature and STC-type hysteresis at high temperature, showing better memory performance for ReS2 FETs as compared to MoS2 FETs. Smaller operating temperature and voltage along with larger READ and RESET-to-WRITE windows make ReS2 FETs a better choice for thermally aided memory applications. Finally, temperature dependent Kelvin probe force microscopy measurements show decreasing (constant) surface potential with increasing temperature for ReS2 (MoS2). This indicates less effective intrinsic trapping at high temperature in ReS2, leading to earlier occurrence of STC-type hysteresis in ReS2 FETs as compared to MoS2 FETs with increasing temperature.

1.
G.
He
,
H.
Ramamoorthy
,
C.-P.
Kwan
,
Y.-H.
Lee
,
J.
Nathawat
,
R.
Somphonsane
,
M.
Matsunaga
,
A.
Higuchi
,
T.
Yamanaka
,
N.
Aoki
 et al., “
Thermally assisted nonvolatile memory in monolayer MoS2 transistors
,”
Nano Lett.
16
,
6445
6451
(
2016
).
2.
N.
Kaushik
,
D. M.
Mackenzie
,
K.
Thakar
,
N.
Goyal
,
B.
Mukherjee
,
P.
Boggild
,
D. H.
Petersen
, and
S.
Lodha
, “
Reversible hysteresis inversion in MoS2 field effect transistors
,”
npj 2D Mater. Appl.
1
,
34
(
2017
).
3.
M.
Chen
,
H.
Nam
,
S.
Wi
,
G.
Priessnitz
,
I. M.
Gunawan
, and
X.
Liang
, “
Multibit data storage states formed in plasma-treated MoS2 transistors
,”
ACS Nano
8
,
4023
4032
(
2014
).
4.
S.
Bertolazzi
,
D.
Krasnozhon
, and
A.
Kis
, “
Nonvolatile memory cells based on MoS2/graphene heterostructures
,”
ACS Nano
7
,
3246
3252
(
2013
).
5.
M. S.
Choi
,
G.-H.
Lee
,
Y.-J.
Yu
,
D.-Y.
Lee
,
S. H.
Lee
,
P.
Kim
,
J.
Hone
, and
W. J.
Yoo
, “
Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices
,”
Nat. Commun.
4
,
1624
(
2013
).
6.
V. K.
Sangwan
,
D.
Jariwala
,
I. S.
Kim
,
K.-S.
Chen
,
T. J.
Marks
,
L. J.
Lauhon
, and
M. C.
Hersam
, “
Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2
,”
Nat. Nanotechnol.
10
,
403
(
2015
).
7.
Q. H.
Wang
,
K.
Kalantar-Zadeh
,
A.
Kis
,
J. N.
Coleman
, and
M. S.
Strano
, “
Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
,”
Nat. Nanotechnol.
7
,
699
(
2012
).
8.
Y.
Yoon
,
K.
Ganapathi
, and
S.
Salahuddin
, “
How good can monolayer MoS2 transistors be?
,”
Nano Lett.
11
,
3768
3773
(
2011
).
9.
H.
Wang
,
L.
Yu
,
Y.-H.
Lee
,
Y.
Shi
,
A.
Hsu
,
M. L.
Chin
,
L.-J.
Li
,
M.
Dubey
,
J.
Kong
, and
T.
Palacios
, “
Integrated circuits based on bilayer MoS2 transistors
,”
Nano Lett.
12
,
4674
4680
(
2012
).
10.
E.
Zhang
,
Y.
Jin
,
X.
Yuan
,
W.
Wang
,
C.
Zhang
,
L.
Tang
,
S.
Liu
,
P.
Zhou
,
W.
Hu
, and
F.
Xiu
, “
ReS2-based field-effect transistors and photodetectors
,”
Adv. Funct. Mater.
25
,
4076
4082
(
2015
).
11.
Y.
Xiong
,
H.
Chen
,
D. W.
Zhang
, and
P.
Zhou
, “
Electronic and optoelectronic applications based on ReS2
,”
Phys. Status Solidi RRL
13
,
1800658
(
2019
).
12.
S.
Tongay
,
H.
Sahin
,
C.
Ko
,
A.
Luce
,
W.
Fan
,
K.
Liu
,
J.
Zhou
,
Y.-S.
Huang
,
C.-H.
Ho
,
J.
Yan
 et al., “
Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling
,”
Nat. Commun.
5
,
3252
(
2014
).
13.
E.
Liu
,
M.
Long
,
J.
Zeng
,
W.
Luo
,
Y.
Wang
,
Y.
Pan
,
W.
Zhou
,
B.
Wang
,
W.
Hu
,
Z.
Ni
 et al., “
High responsivity phototransistors based on few-layer ReS2 for weak signal detection
,”
Adv. Funct. Mater.
26
,
1938
1944
(
2016
).
14.
D. K.
Schroder
and
J. A.
Babcock
, “
Negative bias temperature instability: Road to cross in deep submicron silicon semiconductor manufacturing
,”
J. Appl. Phys.
94
,
1
18
(
2003
).
15.
S.
Hong
,
O.
Auciello
, and
D.
Wouters
,
Emerging Non-Volatile Memories
(
Springer
,
2014
).
16.
M. K.
Patterson
, “
The effect of data center temperature on energy efficiency
,” in
2008 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
IEEE
,
2008
), pp.
1167
1174
.
17.
N.
El-Sayed
,
I. A.
Stefanovici
,
G.
Amvrosiadis
,
A. A.
Hwang
, and
B.
Schroeder
, “
Temperature management in data centers: Why some (might) like it hot
,” in
Proceedings of the ACM Sigmetrics Performance Evaluation Review
(
2012
), Vol.
40
, pp.
163
174
.
18.
D. M.
Mackenzie
,
J. D.
Buron
,
P. R.
Whelan
,
J. M.
Caridad
,
M.
Bjergfelt
,
B.
Luo
,
A.
Shivayogimath
,
A. L.
Smitshuysen
,
J. D.
Thomsen
,
T. J.
Booth
 et al., “
Quality assessment of graphene: Continuity, uniformity, and accuracy of mobility measurements
,”
Nano Res.
10
,
3596
3605
(
2017
).
19.
N.
Goyal
,
N.
Kaushik
,
H.
Jawa
, and
S.
Lodha
, “
Enhanced stability and performance of few-layer black phosphorus transistors by electron beam irradiation
,”
Nanoscale
10
,
11616
11623
(
2018
).
20.
N.
Goyal
,
N.
Parihar
,
H.
Jawa
,
S.
Mahapatra
, and
S.
Lodha
, “
Accurate threshold voltage reliability evaluation of thin Al2O3 top gate dielectric black phosphorous FETs using ultrafast measurement pulses
,”
ACS Appl. Mater. Interfaces
11
,
23673
23680
(
2019
).
21.
A. D.
Bartolomeo
,
L.
Genovese
,
F.
Giubileo
,
L.
Iemmo
,
G.
Luongo
,
T.
Foller
, and
M.
Schleberger
, “
Hysteresis in the transfer characteristics of MoS2 transistors
,”
2D Mater.
5
,
015014
(
2017
).
22.
Y.
Park
,
H. W.
Baac
,
J.
Heo
, and
G.
Yoo
, “
Thermally activated trap charges responsible for hysteresis in multilayer MoS2 field-effect transistors
,”
Appl. Phys. Lett.
108
,
083102
(
2016
).
23.
A. K.
Geim
and
K. S.
Novoselov
, “
The rise of graphene
,” in
Nanoscience and Technology: A Collection of Reviews from Nature Journals
(
World Scientific
,
2010
), pp.
11
19
.
24.
A. K.
Geim
, “
Nobel lecture: Random walk to graphene
,”
Rev. Mod. Phys.
83
,
851
(
2011
).
25.
N.
Goyal
,
D. M.
Mackenzie
,
H.
Jawa
,
D. H.
Petersen
, and
S.
Lodha
, “
Thermally aided nonvolatile memory using ReS2 transistors
,” in
76th Device Research Conference
(
IEEE
,
2018
).
26.
H.-C.
Lin
,
C.-H.
Hung
,
W.-C.
Chen
,
Z.-M.
Lin
,
H.-H.
Hsu
, and
T.-Y.
Hunag
, “
Origin of hysteresis in current-voltage characteristics of polycrystalline silicon thin-film transistors
,”
J. Appl. Phys.
105
,
054502
(
2009
).
27.
N.
Kaushik
,
S.
Ghosh
, and
S.
Lodha
, “
Low-frequency noise in supported and suspended MoS2 transistors
,”
IEEE Trans. Electron Devices
65
,
4135
4140
(
2018
).
28.
K.
Thakar
,
B.
Mukherjee
,
S.
Grover
,
N.
Kaushik
,
M.
Deshmukh
, and
S.
Lodha
, “
Multilayer ReS2 photodetectors with gate tunability for high responsivity and high-speed applications
,”
ACS Appl. Mater. Interfaces
10
,
36512
36522
(
2018
).
29.
F.
Li
,
J.
Qi
,
M.
Xu
,
J.
Xiao
,
Y.
Xu
,
X.
Zhang
,
S.
Liu
, and
Y.
Zhang
, “
Layer dependence and light tuning surface potential of 2d MoS2 on various substrates
,”
Small
13
,
1603103
(
2017
).
30.
J. H.
Kim
,
J.
Lee
,
J. H.
Kim
,
C.
Hwang
,
C.
Lee
, and
J. Y.
Park
, “
Work function variation of MoS2 atomic layers grown with chemical vapor deposition: The effects of thickness and the adsorption of water/oxygen molecules
,”
Appl. Phys. Lett.
106
,
251606
(
2015
).
31.
S. Y.
Lee
,
U. J.
Kim
,
J.
Chung
,
H.
Nam
,
H. Y.
Jeong
,
G. H.
Han
,
H.
Kim
,
H. M.
Oh
,
H.
Lee
,
H.
Kim
 et al., “
Large work function modulation of monolayer MoS2 by ambient gases
,”
ACS Nano
10
,
6100
6107
(
2016
).
32.
Y.
Feng
,
K.
Zhang
,
H.
Li
,
F.
Wang
,
B.
Zhou
,
M.
Fang
,
W.
Wang
,
J.
Wei
, and
H. P.
Wong
, “
In situ visualization and detection of surface potential variation of mono and multilayer MoS2 under different humidities using kelvin probe force microscopy
,”
Nanotechnology
28
,
295705
(
2017
).

Supplementary Material

You do not currently have access to this content.