In phase change memory cells, the majority of heat is lost through the electrodes during the programming process, which leads to significant drops in the performance of the memory device. In this Letter, we report on the thermal properties of thin film carbon nitride with a modest electrical resistivity of 5–10 mΩ cm, a low thermal conductivity of 1.47 ± 0.09 W m−1 K–1, and a low interfacial thermal conductance between carbon nitride and phase change material for length scales below 40 nm. The thermally insulating property of carbon nitride makes it a suitable thermal barrier, allowing for less heat loss during Joule heating within the memory unit. We compare the thermal properties of carbon nitride against the commonly used electrodes and insulators such as tungsten and silicon nitride, respectively, to demonstrate the promise of carbon nitride as a potential material candidate for electrode applications in phase change memory devices.

1.
D.
Loke
,
T.
Lee
,
W.
Wang
,
L.
Shi
,
R.
Zhao
,
Y.
Yeo
,
T.
Chong
, and
S.
Elliott
, “
Breaking the speed limits of phase-change memory
,”
Science
336
,
1566
1569
(
2012
).
2.
F.
Xiong
,
A. D.
Liao
,
D.
Estrada
, and
E.
Pop
, “
Low-power switching of phase-change materials with carbon nanotube electrodes
,”
Science
332
,
568
570
(
2011
).
3.
G. W.
Burr
,
R. S.
Shenoy
,
K.
Virwani
,
P.
Narayanan
,
A.
Padilla
,
B.
Kurdi
, and
H.
Hwang
, “
Access devices for 3D crosspoint memory
,”
J. Vac. Sci. Technol., B
32
,
040802
(
2014
).
4.
A.
Chen
, “
Memory selector devices and crossbar array design: A modeling-based assessment
,”
J. Comput. Electron.
16
,
1186
1200
(
2017
).
5.
C.
Ríos
,
M.
Stegmaier
,
P.
Hosseini
,
D.
Wang
,
T.
Scherer
,
C. D.
Wright
,
H.
Bhaskaran
, and
W. H.
Pernice
, “
Integrated all-photonic non-volatile multi-level memory
,”
Nat. Photonics
9
,
725
(
2015
).
6.
D.
Kuzum
,
R. G.
Jeyasingh
,
B.
Lee
, and
H.-S. P.
Wong
, “
Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing
,”
Nano Lett.
12
,
2179
2186
(
2012
).
7.
G. W.
Burr
,
R. M.
Shelby
,
S.
Sidler
,
C. D.
Nolfo
,
J.
Jang
,
I.
Boybat
,
R. S.
Shenoy
,
P.
Narayanan
,
K.
Virwani
,
E. U.
Giacometti
 et al., “
Experimental demonstration and tolerancing of a large-scale neural network (165 000 synapses) using phase-change memory as the synaptic weight element
,”
IEEE Trans. Electron Devices
62
,
3498
3507
(
2015
).
8.
S.
Kim
,
M.
Ishii
,
S.
Lewis
,
T.
Perri
,
M.
BrightSky
,
W.
Kim
,
R.
Jordan
,
G.
Burr
,
N.
Sosa
,
A.
Ray
 et al., “
NVM neuromorphic core with 64 k-cell (256-by-256) phase change memory synaptic array with on-chip neuron circuits for continuous in-situ learning
,” in
IEEE International Electron Devices Meeting (IEDM)
(
IEEE
,
2015
), pp.
1
17
.
9.
M.
Suri
,
O.
Bichler
,
D.
Querlioz
,
O.
Cueto
,
L.
Perniola
,
V.
Sousa
,
D.
Vuillaume
,
C.
Gamrat
, and
B.
DeSalvo
, “
Phase change memory as synapse for ultra-dense neuromorphic systems: Application to complex visual pattern extraction
,” in
International Electron Devices Meeting
(
IEEE
,
2011
), p.
4
.
10.
G. W.
Burr
,
M. J.
Breitwisch
,
M.
Franceschini
,
D.
Garetto
,
K.
Gopalakrishnan
,
B.
Jackson
,
B.
Kurdi
,
C.
Lam
,
L. A.
Lastras
,
A.
Padilla
 et al., “
Phase change memory technology
,”
J. Vac. Sci. Technol., B
28
,
223
262
(
2010
).
11.
E.
Bozorg-Grayeli
,
J. P.
Reifenberg
,
M. A.
Panzer
,
J. A.
Rowlette
, and
K. E.
Goodson
, “
Temperature-dependent thermal properties of phase-change memory electrode materials
,”
IEEE Electron Device Lett.
32
,
1281
1283
(
2011
).
12.
S.
Harnsoongnoen
and
C.
Sa-ngiamsak
, “
Confined-chalcogenide phase-change memory with thin metal oxide interlayer for low reset current operation
,” in
6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology
(
IEEE
,
2009
), Vol.
1
, pp.
440
443
.
13.
J. P.
Reifenberg
,
K.-W.
Chang
,
M. A.
Panzer
,
S.
Kim
,
J. A.
Rowlette
,
M.
Asheghi
,
H.-S. P.
Wong
, and
K. E.
Goodson
, “
Thermal boundary resistance measurements for phase-change memory devices
,”
IEEE Electron Device Lett.
31
,
56
58
(
2010
).
14.
B.
Saha
,
Y. R.
Koh
,
J. P.
Feser
,
S.
Sadasivam
,
T. S.
Fisher
,
A.
Shakouri
, and
T. D.
Sands
, “
Phonon wave effects in the thermal transport of epitaxial TiN/(Al, Sc) N metal/semiconductor superlattices
,”
J. Appl. Phys.
121
,
015109
(
2017
).
15.
W.
Ren
,
B.
Liu
,
Z.
Xu
,
J.
Xu
,
A.
He
,
L.
Jiang
,
X.
Jing
,
Y.
Xiang
,
B.
Zhang
,
J.
Ren
 et al., “
PVD TiN for bottom electrode of phase change memory
,”
ECS Trans.
60
,
533
538
(
2014
).
16.
J.
Wu
,
M.
Breitwisch
,
S.
Kim
,
T.
Hsu
,
R.
Cheek
,
P.
Du
,
J.
Li
,
E.
Lai
,
Y.
Zhu
,
T.
Wang
 et al., “
A low power phase change memory using thermally confined TaN/TiN bottom electrode
,” in
2011 International Electron Devices Meeting
(
IEEE
,
2011
), p.
3
.
17.
L.
Wang
,
S.
Gong
,
C.
Yang
, and
J.
Wen
, “
Towards low energy consumption data storage era using phase-change probe memory with tin bottom electrode
,”
Nanotechnol. Rev.
5
,
455
460
(
2016
).
18.
C.
Ahn
,
S. W.
Fong
,
Y.
Kim
,
S.
Lee
,
A.
Sood
,
C. M.
Neumann
,
M.
Asheghi
,
K. E.
Goodson
,
E.
Pop
, and
H.-S. P.
Wong
, “
Energy-efficient phase-change memory with graphene as a thermal barrier
,”
Nano Lett.
15
,
6809
6814
(
2015
).
19.
D. A.
Shirley
, “
High-resolution x-ray photoemission spectrum of the valence bands of gold
,”
Phys. Rev. B
5
,
4709
(
1972
).
20.
M. G.
Ghossoub
,
J.-H.
Lee
,
O. T.
Baris
,
D. G.
Cahill
, and
S.
Sinha
, “
Percolation of thermal conductivity in amorphous fluorocarbons
,”
Phys. Rev. B
82
,
195441
(
2010
).
21.
K.
Kang
,
Y. K.
Koh
,
C.
Chiritescu
,
X.
Zheng
, and
D. G.
Cahill
, “
Two-tint pump-probe measurements using a femtosecond laser oscillator and sharp-edged optical filters
,”
Rev. Sci. Instrum.
79
,
114901
(
2008
).
22.
A.
Marconnet
,
M.
Panzer
,
S.
Yerci
,
S.
Minissale
,
X.
Wang
,
X.
Zhang
,
L.
Dal Negro
, and
K.
Goodson
, “
Thermal conductivity and photoluminescence of light-emitting silicon nitride films
,”
Appl. Phys. Lett.
100
,
051908
(
2012
).
23.
J. L.
Braun
,
C. H.
Baker
,
A.
Giri
,
M.
Elahi
,
K.
Artyushkova
,
T. E.
Beechem
,
P. M.
Norris
,
Z. C.
Leseman
,
J. T.
Gaskins
, and
P. E.
Hopkins
, “
Size effects on the thermal conductivity of amorphous silicon thin films
,”
Phys. Rev. B
93
,
140201
(
2016
).
24.
I.
Childres
,
L. A.
Jauregui
,
W.
Park
,
H.
Cao
, and
Y. P.
Chen
, “
Raman spectroscopy of graphene and related materials
,” in
New Developments in Photon and Materials Research
, edited by
J. I.
Jang
(
Nova Publishers
,
2013
), p.
403
.
25.
T.
Siegrist
,
P.
Jost
,
H.
Volker
,
M.
Woda
,
P.
Merkelbach
,
C.
Schlockermann
, and
M.
Wuttig
, “
Disorder-induced localization in crystalline phase-change materials
,”
Nat. Mater.
10
,
202
(
2011
).
26.
P. E.
Hopkins
, “
Thermal transport across solid interfaces with nanoscale imperfections: Effects of roughness, disorder, dislocations, and bonding on thermal boundary conductance
,”
ISRN Mech. Eng.
2013
,
1
.
27.
A.
Jagannathan
,
R.
Orbach
, and
O.
Entin-Wohlman
, “
Thermal conductivity of amorphous materials above the plateau
,”
Phys. Rev. B
39
,
13465
(
1989
).
28.
D. G.
Cahill
,
H. E.
Fischer
,
T.
Klitsner
,
E.
Swartz
, and
R.
Pohl
, “
Thermal conductivity of thin films: Measurements and understanding
,”
J. Vac. Sci. Technol., A
7
,
1259
1266
(
1989
).
29.
M.
Beekman
and
D. G.
Cahill
, “
Inorganic crystals with glass-like and ultralow thermal conductivities
,”
Cryst. Res. Technol.
52
,
1700114
(
2017
).

Supplementary Material

You do not currently have access to this content.