Self-testing and semi-device independent protocols are becoming the preferred choice for quantum technologies, being able to certify their quantum nature with few assumptions and simple experimental implementations. In particular, for quantum random number generators, the possibility of monitoring, in real time, the entropy of the source only by measuring the input/output statistics is a characteristic that no other classical system could provide. The cost of this possibility is not necessarily increased complexity and reduced performance. Indeed, here we show that with a simple optical setup consisting of commercially available components, a high bit generation rate can be achieved. We manage to certify 145.5 MHz of quantum random bit generation rate.

1.
A.
Stefanov
,
N.
Gisin
,
O.
Guinnard
,
L.
Guinnard
, and
H.
Zbinden
, “
Optical quantum random number generator
,”
J. Mod. Opt.
47
,
595
598
(
2000
).
2.
T.
Jennewein
,
U.
Achleitner
,
G.
Weihs
,
H.
Weinfurter
, and
A.
Zeilinger
, “
A fast and compact quantum random number generator
,”
Rev. Sci. Instrum.
71
,
1675
1680
(
2000
).
3.
C.
Gabriel
,
C.
Wittmann
,
D.
Sych
,
R.
Dong
,
W.
Mauerer
,
U. L.
Andersen
,
C.
Marquardt
, and
G.
Leuchs
, “
A generator for unique quantum random numbers based on vacuum states
,”
Nat. Photonics
4
,
711
715
(
2010
).
4.
B.
Qi
,
Y.-M.
Chi
,
H.-K.
Lo
, and
L.
Qian
, “
High-speed quantum random number generation by measuring phase noise of a single-mode laser
,”
Opt. Lett.
35
,
312
314
(
2010
).
5.
C.
Abellán
,
W.
Amaya
,
M.
Jofre
,
M.
Curty
,
A.
Acín
,
J.
Capmany
,
V.
Pruneri
, and
M. W.
Mitchell
, “
Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode
,”
Opt. Express
22
,
1645
1654
(
2014
).
6.
B.
Sanguinetti
,
A.
Martin
,
H.
Zbinden
, and
N.
Gisin
, “
Quantum random number generation on a mobile phone
,”
Phys. Rev. X
4
,
031056
(
2014
).
7.
R.
Colbeck
, “
Quantum and relativistic protocols for secure multi-party computation,” Ph.D. thesis
(
University of Cambridge
,
2009
).
8.
S.
Pironio
,
A.
Acín
,
S.
Massar
,
A. B.
de la Giroday
,
D. N.
Matsukevich
,
P.
Maunz
,
S.
Olmschenk
,
D.
Hayes
,
L.
Luo
,
T. A.
Manning
, and
C.
Monroe
, “
Random numbers certified by bell's theorem
,”
Nature
464
,
1021
1024
(
2010
).
9.
R.
Colbeck
and
A.
Kent
, “
Private randomness expansion with untrusted devices
,”
J. Phys. A
44
,
095305
(
2011
).
10.
H.-W.
Li
,
Z.-Q.
Yin
,
Y.-C.
Wu
,
X.-B.
Zou
,
S.
Wang
,
W.
Chen
,
G.-C.
Guo
, and
Z.-F.
Han
, “
Semi-device-independent random-number expansion without entanglement
,”
Phys. Rev. A
84
,
034301
(
2011
).
11.
G.
Vallone
,
D. G.
Marangon
,
M.
Tomasin
, and
P.
Villoresi
, “
Quantum randomness certified by the uncertainty principle
,”
Phys. Rev. A
90
,
052327
(
2014
).
12.
T.
Lunghi
,
J. B.
Brask
,
C. C. W.
Lim
,
Q.
Lavigne
,
J.
Bowles
,
A.
Martin
,
H.
Zbinden
, and
N.
Brunner
, “
Self-testing quantum random number generator
,”
Phys. Rev. Lett.
114
,
150501
(
2015
).
13.
G.
Cañas
,
J.
Cariñe
,
E. S.
Gómez
,
J. F.
Barra
,
A.
Cabello
,
G. B.
Xavier
,
G.
Lima
, and
M.
Pawłowski
, “
Experimental quantum randomness generation invulnerable to the detection loophole
,” arXiv:1410.3443 (
2014
).
14.
Z.
Cao
,
H.
Zhou
, and
X.
Ma
, “
Loss-tolerant measurement-device-independent quantum random number generation
,”
New J. Phys.
17
,
125011
(
2015
).
15.
D. G.
Marangon
,
G.
Vallone
, and
P.
Villoresi
, “
Source-device-independent ultrafast quantum random number generation
,”
Phys. Rev. Lett.
118
,
060503
(
2017
).
16.
Z.
Cao
,
H.
Zhou
,
X.
Yuan
, and
X.
Ma
, “
Source-independent quantum random number generation
,”
Phys. Rev. X
6
,
011020
(
2016
).
17.
F.
Xu
,
J. H.
Shapiro
, and
F. N. C.
Wong
, “
Experimental fast quantum random number generation using high-dimensional entanglement with entropy monitoring
,”
Optica
3
,
1266
1269
(
2016
).
18.
J. B.
Brask
,
A.
Martin
,
W.
Esposito
,
R.
Houlmann
,
J.
Bowles
,
H.
Zbinden
, and
N.
Brunner
, “
Megahertz-rate semi-device-independent quantum random number generators based on unambiguous state discrimination
,”
Phys. Rev. Appl.
7
,
054018
(
2017
).
19.
T.
Gehring
,
C.
Lupo
,
A.
Kordts
,
D.
Nikolic
,
N.
Jain
,
T.
Pedersen
,
S.
Pirandola
, and
U.
Andersen
, “
8 gbit/s real-time quantum random number generator with non-iid samples
,” arXiv:1812.05377 (
2018
).
20.
T.
Michel
,
J.
Haw
,
D.
Marangon
,
O.
Thearle
,
G.
Vallone
,
P.
Villoresi
,
P.
Lam
, and
S.
Assad
, “
Real-time source independent quantum random number generator with squeezed states
,” arXiv:1903.01071 (
2019
).
21.
T.
Van Himbeeck
,
E.
Woodhead
,
N. J.
Cerf
,
R.
García-Patrón
, and
S.
Pironio
, “
Semi-device-independent framework based on natural physical assumptions
,”
Quantum
1
,
33
(
2017
).
22.
D.
Rusca
,
T.
van Himbeeck
,
A.
Martin
,
J. B.
Brask
,
W.
Shi
,
S.
Pironio
,
N.
Brunner
, and
H.
Zbinden
, “
Self-testing quantum random-number generator based on an energy bound
,”
Phys. Rev. A
100
,
062338
(
2019
).
23.
M.
Avesani
,
H.
Tebyanian
,
P.
Villoresi
, and
G.
Vallone
, “
Semi-device-independent heterodyne-based quantum random number generator
,” arXiv:2004.08344 (
2020
).
24.
T.
Van Himbeeck
and
S.
Pironio
, arXiv:1905.09117 (
2019
).

Supplementary Material

You do not currently have access to this content.