A nanodiamond embedding a single nitrogen-vacancy (NV) center has outstanding optical properties since it is readily manipulated and coupled with nanophotonic devices. Reliable methods to identify the orientation of an NV axis on photonic platforms are important to precisely estimate the coupling efficiency between them. We report on a method to identify the orientation of an NV axis. The proposed method consists of a single dataset of optically detected magnetic resonance (ODMR) measurements taken while rotating the magnetic field in a plane and a single ODMR measurement taken while applying the magnetic field in a single direction. By applying this method to a nanodiamond with a single NV center on a microscope coverslip, the orientation of the NV center is determined to be (θNV,ϕNV)=(144.6°,52.9°) when the magnetic field is scanned in the xy-plane. When the magnetic field is scanned in the xz-plane, it is determined to be (θNV,ϕNV)=(148.0°,45.7°) which is consistent within 5.2°. This technique will advance progress toward realizing photon-based quantum networks and quantum communication.

1.
M. W.
Doherty
,
N. B.
Manson
,
P.
Delaney
,
F.
Jelezko
,
J.
Wrachtrup
, and
L. C.
Hollenberg
,
Phys. Rep.
528
(
1
),
1
(
2013
).
2.
G.
Balasubramanian
,
I. Y.
Chan
,
R.
Kolesov
,
M.
Al-Hmoud
,
J.
Tisler
,
C.
Shin
,
C.
Kim
,
A.
Wojcik
,
P. R.
Hemmer
,
A.
Krueger
,
T.
Hanke
,
A.
Leitenstorfer
,
R.
Bratschitsch
,
F.
Jelezko
, and
J.
Wrachtrup
,
Nature
455
,
648
(
2008
).
3.
P.
Maletinsky
,
S.
Hong
,
M. S.
Grinolds
,
B.
Hausmann
,
M. D.
Lukin
,
R. L.
Walsworth
,
M.
Loncar
, and
A.
Yacoby
,
Nat. Nanotechnol.
7
,
320
(
2012
).
4.
G.
Kucsko
,
P. C.
Maurer
,
N. Y.
Yao
,
M.
Kubo
,
H. J.
Noh
,
P. K.
Lo
,
H.
Park
, and
M. D.
Lukin
,
Nature
500
,
54
(
2013
).
5.
C. L.
Degen
,
F.
Reinhard
, and
P.
Cappellaro
,
Rev. Mod. Phys.
89
,
035002
(
2017
).
6.
T.
Fujisaku
,
R.
Tanabe
,
S.
Onoda
,
R.
Kubota
,
T. F.
Segawa
,
F. T.
So
,
T.
Ohshima
,
I.
Hamachi
,
M.
Shirakawa
, and
R.
Igarashi
,
ACS Nano
13
,
11726
(
2019
).
7.
T.
Schröder
,
M.
Fujiwara
,
T.
Noda
,
H.-Q.
Zhao
,
O.
Benson
, and
S.
Takeuchi
,
Opt. Express
20
,
10490
(
2012
).
8.
L.
Liebermeister
,
F.
Petersen
,
A. v
Münchow
,
D.
Burchardt
,
J.
Hermelbracht
,
T.
Tashima
,
A. W.
Schell
,
O.
Benson
,
T.
Meinhardt
,
A.
Krueger
,
A.
Stiebeiner
,
A.
Rauschenbeutel
,
H.
Weinfurter
, and
M.
Weber
,
Appl. Phys. Lett.
104
,
031101
(
2014
).
9.
M.
Fujiwara
,
K.
Yoshida
,
T.
Noda
,
H.
Takashima
,
A. W.
Schell
,
N.
Mizuochi
, and
S.
Takeuchi
,
Nanotechnology
27
,
455202
(
2016
).
10.
I.
Aharonovich
,
S.
Castelletto
,
D. A.
Simpson
,
C.-H.
Su
,
A. D.
Greentree
, and
S.
Prawer
,
Rep. Prog. Phys.
74
,
076501
(
2011
).
11.
E.
Togan
,
Y.
Chu
,
A. S.
Trifonov
,
L.
Jiang
,
J.
Maze
,
L.
Childress
,
M. V. G.
Dutt
,
A. S.
Sørensen
,
P. R.
Hemmer
,
A. S.
Zibrov
, and
M. D.
Lukin
,
Nature
466
,
730
(
2010
).
12.
S.
Yang
,
Y.
Wang
,
D. D. B.
Rao
,
T.
Hien Tran
,
A. S.
Momenzadeh
,
M.
Markham
,
D. J.
Twitchen
,
P.
Wang
,
W.
Yang
,
R.
Stöhr
,
P.
Neumann
,
H.
Kosaka
, and
J.
Wrachtrup
,
Nat. Photonics
10
,
507
(
2016
).
13.
A. W.
Schell
,
G.
Kewes
,
T.
Hanke
,
A.
Leitenstorfer
,
R.
Bratschitsch
,
O.
Benson
, and
T.
Aichele
,
Opt. Express
19
,
7914
(
2011
).
14.
T.
van der Sar
,
J.
Hagemeier
,
W.
Pfaff
,
E. C.
Heeres
,
S. M.
Thon
,
H.
Kim
,
P. M.
Petroff
,
T. H.
Oosterkamp
,
D.
Bouwmeester
, and
R.
Hanson
,
Appl. Phys. Lett.
98
,
193103
(
2011
).
15.
M.
Barth
,
N.
Nüsse
,
B.
Löchel
, and
O.
Benson
,
Opt. Lett.
34
,
1108
(
2009
).
16.
M.
Fujiwara
,
K.
Toubaru
,
T.
Noda
,
H.-Q.
Zhao
, and
S.
Takeuchi
,
Nano Lett.
11
,
4362
(
2011
).
17.
R.
Yalla
,
F.
Le Kien
,
M.
Morinaga
, and
K.
Hakuta
,
Phys. Rev. Lett.
109
,
063602
(
2012
).
18.
A. W.
Schell
,
H.
Takashima
,
T. T.
Tran
,
I.
Aharonovich
, and
S.
Takeuchi
,
ACS Photonics
4
,
761
(
2017
).
19.
M.
Almokhtar
,
M.
Fujiwara
,
H.
Takashima
, and
S.
Takeuchi
,
Opt. Express
22
,
20045
(
2014
).
20.
P. R.
Dolan
,
X.
Li
,
J.
Storteboom
, and
M.
Gu
,
Opt. Express
22
,
4379
(
2014
).
21.
N. D.
Lai
,
D.
Zheng
,
F.
Treussart
, and
J.-F.
Roch
,
Adv. Nat. Sci.
1
,
015014
(
2010
).
22.
L.
Rondin
,
J. P.
Tetienne
,
S.
Rohart
,
A.
Thiaville
,
T.
Hingant
,
P.
Spinicelli
,
J. F.
Roch
, and
V.
Jacques
,
Nat. Commun.
4
(
1
),
2279
(
2013
).
23.
C.
Fang
,
W.
Shen
,
Y.
Zhang
,
P.
Mu
,
Z.
Zhang
, and
X.
Jia
,
Cryst. Growth Des.
19
,
3955
(
2019
).
24.
J. R.
Maze
,
A.
Gali
,
E.
Togan
,
Y.
Chu
,
A.
Trifonov
,
E.
Kaxiras
, and
M. D.
Lukin
,
New J. Phys.
13
,
025025
(
2011
).
25.
T. P. M.
Alegre
,
C.
Santori
,
G.
Medeiros-Ribeiro
, and
R. G.
Beausoleil
,
Phys. Rev. B
76
,
165205
(
2007
).
26.
J. M.
Schloss
,
J. F.
Barry
,
M. J.
Turner
, and
R. L.
Walsworth
,
Phys. Rev. Appl.
10
,
034044
(
2018
).
27.
T.
Weggler
,
C.
Ganslmayer
,
F.
Frank
,
T.
Eilert
,
F.
Jelezko
, and
J.
Michaelis
,
Nano Lett.
20
,
2980
(
2020
).
You do not currently have access to this content.