Acoustic holograms can be used to form complex distributions of pressure in 3D at MHz frequencies from simple inexpensive ultrasound sources. The generation of such fields is vital to a diverse range of applications in physical acoustics. However, at present, the application of acoustic holograms is severely hindered by the static nature of the resulting fields. In this work, it is shown that by intentionally reducing the diffraction efficiency of each hologram, it is possible to create stackable acoustic holograms that can be repositioned to reconfigure the combined acoustic field. An experimental test-case consisting of two holograms, each designed to generate a distinct distribution of acoustic foci, is used to demonstrate the feasibility of this approach. Field scans taken for four different positions of the two holograms confirm that the individual patterns for each hologram can be arbitrary translated relative to one another. This allows for the generation of a much greater range of fields from a single transducer than could be created using a single hologram.

1.
A.
Marzo
,
S.
Seah
,
B.
Drinkwater
,
D.
Sahoo
,
B.
Long
, and
S.
Subramanian
, “
Holographic acoustic elements for manipulation of levitated objects
,”
Nat. Commun.
6
,
8661
(
2015
).
2.
G.
Memoli
,
M.
Caleap
,
M.
Asakawa
,
D.
Sahoo
,
B.
Drinkwater
, and
S.
Subramanian
, “
Metamaterial bricks and quantization of meta-surfaces
,”
Nat. Commun.
8
,
14608
(
2017
).
3.
T.
Carter
,
S.
Seah
,
B.
Long
,
B.
Drinkwater
, and
S.
Subramanian
, “
UltraHaptics: Multi-point mid-air haptic feedback for touch surfaces
,” in
UIST 2013: Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology
(
2013
), p.
505
.
4.
R.
Hirayama
,
D.
Plasencia
,
N.
Masuda
, and
S.
Subramanian
, “
A volumetric display for visual, tactile and audio presentation using acoustic trapping
,”
Nature
575
,
320
(
2019
).
5.
Y.
Hertzberg
and
G.
Navon
, “
Bypassing absorbing objects in focused ultrasound using computer generated holographic technique
,”
Med. Phys.
38
,
6407
(
2011
).
6.
G.
Maimbourg
,
A.
Houdouin
,
T.
Deffieux
,
M.
Tanter
, and
J.
Aubry
, “
3D-printed adaptive acoustic lens as a disruptive technology for transcranial ultrasound therapy using single-element transducers
,”
Phys. Med. Biol. Lett.
63
,
025026
(
2018
).
7.
S.
Jiménez-Gambín
,
N.
Jiménez
,
J.
Benlloch
, and
F.
Camarena
, “
Holograms to focus arbitrary ultrasonic fields through the skull
,”
Phys. Rev. Appl.
12
,
014016
(
2019
).
8.
A.
Marzo
and
B.
Drinkwater
, “
Holographic acoustic tweezers
,”
Proc. Natl. Acad. Sci.
116
,
84
(
2019
).
9.
M.
Bakhtiari-Nejad
,
A.
Elnahhas
,
M.
Hajj
, and
S.
Shahab
, “
Acoustic holograms in contactless ultrasonic power transfer systems: Modeling and experiment
,”
J. Appl. Phys.
124
,
244901
(
2018
).
10.
P.
Kruizinga
,
P.
van der Meulen
,
A.
Fedjajevs
,
F.
Mastik
,
G.
Springeling
,
N.
de Jong
,
J.
Bosch
, and
G.
Leus
, “
Compressive 3D ultrasound imaging using a single sensor
,”
Sci. Adv.
3
,
e1701423
(
2017
).
11.
R.
Lalonde
and
J.
Hunt
, “
Field conjugate acoustic lenses for ultrasound hyperthermia
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
40
,
592
(
1993
).
12.
K.
Melde
,
A. G.
Mark
,
T.
Qiu
, and
P.
Fischer
, “
Holograms for acoustics
,”
Nature
537
,
518
(
2016
).
13.
J.
Zhang
,
Y.
Tian
,
Y.
Cheng
, and
X.
Liu
, “
Acoustic holography using composite metasurfaces
,”
Appl. Phys. Lett.
116
,
030501
(
2020
).
14.
L.
Cox
,
K.
Melde
,
A.
Croxford
,
P.
Fischer
, and
B.
Drinkwater
, “
Acoustic hologram enhanced phased arrays for ultrasonic particle manipulation
,”
Phys. Rev. Appl.
12
,
064055
(
2019
).
15.
M. D.
Brown
,
B. T.
Cox
, and
B. E.
Treeby
, “
Design of multi-frequency kinoforms
,”
Appl. Phys. Lett.
111
,
244101
(
2017
).
16.
R.
Lalonde
and
J.
Hunt
, “
Variable frequency field conjugate lenses for ultrasound hyperthermia
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
42
,
825
(
1995
).
17.
M.
Norasikin
,
D.
Martinez Plasencia
,
S.
Polychronopoulos
,
G.
Memoli
,
Y.
Tokuda
, and
S.
Subramanian
, “
SoundBender: Dynamic acoustic control behind obstacles
,” in
the 31st Annual ACM Symposium on User Interface Software and Technology
(
ACM
,
Berlin, Germany
,
2018
), p.
247
.
18.
V.
Moreno
,
J.
Roman
, and
J.
Salgueiro
, “
High efficiency diffractive lenses: Deduction of kinoform profile
,”
Am. J. Phys.
65
,
556
(
1997
).
19.
S.
Mellin
and
G.
Nordin
, “
Limits of scalar diffraction theory and an iterative angular spectrum algorithm for finite aperture diffractive optical element design
,”
Opt. Express
8
,
705
(
2001
).
20.
B.
Treeby
and
B.
Cox
, “
k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields
,”
J. Biomed. Opt.
15
,
021314
(
2010
).
21.
Z.
Ma
,
A.
Holle
,
K.
Melde
,
T.
Qiu
,
K.
Poeppel
,
V.
Kadiri
, and
P.
Fischer
, “
Acoustic holographic cell patterning in a biocompatible hydrogel
,”
Adv. Mater.
32
,
1904181
(
2020
).
22.
K.
Melde
,
E.
Choi
,
Z.
Wu
,
S.
Palagi
,
T.
Qiu
, and
P.
Fischer
, “
Acoustic fabrication via the assembly and fusion of particles
,”
Adv. Mater.
30
,
1704507
(
2018
).
You do not currently have access to this content.