Dropwise condensation (DWC) on non-wetting surfaces has remarkable potential to enhance heat transfer performance compared to filmwise condensation on wetting substrates. In this article, we discuss important recent developments and challenges in the field of DWC, including durability of DWC-promoting coatings, DWC of low surface tension fluids, physical mechanisms governing DWC, unconventional methods to achieve DWC, and promising metrology techniques for DWC. We end the article by providing a road map detailing where we believe the community should direct both fundamental and applied efforts in order to solve the identified century-old challenges that limit DWC implementation.

1.
R.
Enright
,
N.
Miljkovic
,
J. L.
Alvarado
,
K.
Kim
, and
J. W.
Rose
, “
Dropwise condensation on micro- and nanostructured surfaces
,”
Nanoscale Microscale Thermophys. Eng.
18
,
223
250
(
2014
).
2.
J. W.
Rose
, “
Dropwise condensation theory and experiment: A review
,”
Proc. Inst. Mech. Eng., Part A
216
,
115
128
(
2002
).
3.
N.
Miljkovic
and
E. N.
Wang
, “
Condensation heat transfer on superhydrophobic surfaces
,”
MRS Bull.
38
,
397
406
(
2013
).
4.
N.
Miljkovic
,
R.
Enright
, and
E. N.
Wang
, “
Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces
,”
ACS Nano
6
(
2
),
1776
1785
(
2012
).
5.
J. B.
Boreyko
and
C.-H.
Chen
, “
Self-propelled dropwise condensate on superhydrophobic surfaces
,”
Phys. Rev. Lett.
103
(
18
),
184501
(
2009
).
6.
X.
Yan
,
L.
Zhang
,
S.
Sett
,
L.
Feng
,
C.
Zhao
,
Z.
Huang
,
H.
Vahabi
,
A. K.
Kota
,
F.
Chen
, and
N.
Miljkovic
, “
Droplet jumping: Effects of droplet size surface structure, pinning, liquid properties
,”
ACS Nano
13
(
2
),
1309
1323
(
2019
).
7.
H.
Cha
,
C.
Xu
,
J.
Sotelo
,
J. M.
Chun
,
Y.
Yokoyama
,
R.
Enright
, and
N.
Miljkovic
, “
Coalescence-induced nanodroplet jumping
,”
Phys. Rev. Fluids
1
(
6
),
064102
(
2016
).
8.
N.
Miljkovic
,
R.
Enright
,
Y.
Nam
,
K.
Lopez
,
N.
Dou
,
J.
Sack
, and
E. N.
Wang
, “
Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces
,”
Nano Lett.
13
(
1
),
179
187
(
2013
).
9.
X.
Yan
,
F.
Chen
,
S.
Sett
,
S.
Chavan
,
H.
Li
,
L.
Feng
,
L.
Li
,
F.
Zhao
,
C.
Zhao
,
Z.
Huang
, and
N.
Miljkovic
, “
Hierarchical condensation
,”
ACS Nano
13
(
7
),
8169
8184
(
2019
).
10.
A. T.
Paxson
,
J. L.
Yagüe
,
K. K.
Gleason
, and
K. K.
Varanasi
, “
Stable dropwise condensation for enhancing heat transfer via the initiated chemical vapor deposition (iCVD) of grafted polymer films
,”
Adv. Mater.
26
,
418
423
(
2014
).
11.
H.
Ishida
and
J. L.
Koenig
, “
Effect of hydrolysis and drying on the siloxane bonds of a silane coupling agent deposited on e-glass fibers
,”
J. Polym. Sci.: Polym. Phys. Ed.
18
(
2
),
233
237
(
1980
).
12.
G.
Yang
,
N. A.
Amro
,
Z. B.
Starkewolfe
, and
G-Y
Liu
, “
Molecular-level approach to inhibit degradations of alkanethiol self-assembled monolayers in aqueous media
,”
Langmuir
20
(
10
),
3995
4003
(
2004
).
13.
K. M.
Holden
,
A. S.
Wanniarachchi
,
P. J.
Marto
,
D. H.
Boone
, and
J. W.
Rose
, “
The use of organic coatings to promote dropwise condensation of steam
,”
J. Heat Transfer
109
,
768
774
(
1987
).
14.
P. J.
Marto
,
D. J.
Looney
,
J. W.
Rose
, and
A. S.
Wanniarachchi
, “
Evaluation of organic coatings for the promotion of dropwise condensation of steam
,”
Int. J. Heat Mass Transfer
29
,
1109
1117
(
1986
).
15.
H. C.
Chang
,
M. C.
Rajagopal
,
M. J.
Hoque
,
J.
Oh
,
L.
Li
,
J.
Li
,
H.
Zhao
,
G.
Kuntumalla
,
S.
Sundar
,
Y.
Meng
,
C.
Shao
,
P. M.
Ferreira
,
S. M.
Salapaka
,
S.
Sinha
, and
N.
Miljkovic
, “
Composite structured surfaces for durable dropwise condensation
,”
Int. J. Heat Mass Transfer
(published online
2020
).
16.
J.
Ma
,
H.
Cha
,
M.-K.
Kim
,
D. G.
Cahill
, and
N.
Miljkovic
, “
Condensation induced delamination of nanoscale hydrophobic films
,”
Adv. Funct. Mater.
29
(
43
),
1905222
(
2019
).
17.
J.
Ma
,
D. G.
Cahill
, and
N.
Miljkovic
, “
Condensation induced blistering as a measurement technique for the adhesion energy of nanoscale polymer films
,”
Nano Lett.
20
(
5
),
3918
3924
(
2020
).
18.
S. R.
White
,
N. R.
Sottos
,
P. H.
Geubelle
,
J. S.
Moore
,
M. R.
Kessler
,
S. R.
Sriram
,
E. N.
Brown
, and
S.
Viswanathan
, “
Autonomic healing of polymer composites
,”
Nature
409
(
6822
),
794
797
(
2001
).
19.
B. B.
Jing
and
C. M.
Evans
, “
Catalyst-free dynamic networks for recyclable, self-healing solid polymer electrolytes
,”
J. Am. Chem. Soc.
141
(
48
),
18932
18937
(
2019
).
20.
H.
Cha
,
A.
Wu
,
M.-K.
Kim
,
K.
Saigusa
,
A.
Liu
, and
N.
Miljkovic
, “
Nanoscale-agglomerate-mediated heterogeneous nucleation
,”
Nano Lett.
17
(
12
),
7544
7551
(
2017
).
21.
B. C.
McDonald
,
J. A.
de Gouw
,
J. B.
Gilman
,
S. H.
Jathar
,
A.
Akherati
,
C. D.
Cappa
,
J. L.
Jimenez
,
J.
Lee-Taylor
,
P. L.
Hayes
,
S. A.
McKeen
,
Y. Y.
Cui
,
S.-W.
Kim
,
D. R.
Gentner
,
G.
Isaacman-VanWertz
,
A. H.
Goldstein
,
R. A.
Harley
,
G. J.
Frost
,
J. M.
Roberts
,
T. B.
Ryerson
, and
M.
Trainer
, “
Volatile chemical products emerging as largest petrochemical source of urban organic emissions
,”
Science
359
(
6377
),
760
(
2018
).
22.
S.
Gligorovski
and
J. P. D.
Abbatt
, “
An indoor chemical cocktail
,”
Science
359
(
6376
),
632
(
2018
).
23.
F. E.
Bartell
and
P. H.
Cardwell
, “
Reproducible contact angles on reproducible metal surfaces. I. Contact angles of water against silver and gold
,”
J. Am. Chem. Soc.
64
(
3
),
494
497
(
1942
).
24.
R. A.
Erb
, “
Wettability of metals under continuous condensing conditions
,”
J. Phys. Chem.
69
(
4
),
1306
1309
(
1965
).
25.
D. W.
Woodruff
and
J. W.
Westwater
, “
Steam condensation on electroplated gold: Effect of plating thickness
,”
Int. J. Heat Mass Transfer
22
(
4
),
629
632
(
1979
).
26.
D. J.
Preston
,
N.
Miljkovic
,
J.
Sack
,
R.
Enright
,
J.
Queeney
, and
E. N.
Wang
, “
Effect of hydrocarbon adsorption on the wettability of rare earth oxide ceramics
,”
Appl. Phys. Lett.
105
(
1
),
011601
(
2014
).
27.
X.
Yan
,
Z.
Huang
,
S.
Sett
,
J.
Oh
,
H.
Cha
,
L.
Li
,
L.
Feng
,
Y.
Wu
,
C.
Zhao
,
D.
Orejon
,
F.
Chen
, and
N.
Miljkovic
, “
Atmosphere-mediated superhydrophobicity of rationally designed micro/nanostructured surfaces
,”
ACS Nano
13
(
4
),
4160
4173
(
2019
).
28.
D.
Orejon
,
A.
Askounis
,
Y.
Takata
, and
D.
Attinger
, “
Dropwise condensation on multiscale bioinspired metallic surfaces with nanofeatures
,”
ACS Appl. Mater. Interfaces
11
(
27
),
24735
24750
(
2019
).
29.
P. G.
de Gennes
, “
Wetting: Statics and dynamics
,”
Rev. Mod. Phys.
57
(
3
),
827
863
(
1985
).
30.
H.
Cha
,
H.
Vahabi
,
A.
Wu
,
S.
Chavan
,
M.-K.
Kim
,
S.
Sett
,
S. A.
Bosch
,
W.
Wang
,
A. K.
Kota
, and
N.
Miljkovic
, “
Dropwise condensation on solid hydrophilic surfaces
,”
Sci. Adv.
6
(
2
),
eaax0746
(
2020
).
31.
L.
Gao
and
T. J.
McCarthy
, “
Contact angle hysteresis explained
,”
Langmuir
22
(
14
),
6234
6237
(
2006
).
32.
H.
Cha
,
J.
Ma
,
Y. S.
Kim
,
L.
Li
,
L.
Sun
,
J.
Tong
, and
N.
Miljkovic
, “
In situ droplet microgoniometry using optical microscopy
,”
ACS Nano
13
(
11
),
13343
13353
(
2019
).
33.
J.
Oh
,
R.
Zhang
,
P. P.
Shetty
,
J. A.
Krogstad
,
P. V.
Braun
, and
N.
Miljkovic
, “
Thin film condensation on nanostructured surfaces
,”
Adv. Funct. Mater.
28
,
1707000
(
2018
).
34.
D.
Orejon
,
O.
Shardt
,
N. S. K.
Gunda
,
T.
Ikuta
,
K.
Takahashi
,
Y.
Takata
, and
S. K.
Mitra
, “
Simultaneous dropwise and filmwise condensation on hydrophilic microstructured surfaces
,”
Int. J. Heat Mass Transfer
114
,
187
197
(
2017
).
35.
R.
Wang
and
D. S.
Antao
, “
Capillary-enhanced filmwise condensation in porous media
,”
Langmuir
34
(
46
),
13855
13863
(
2018
).
36.
D. J.
Preston
,
K. L.
Wilke
,
Z.
Lu
,
S. S.
Cruz
,
Y.
Zhao
,
L. L.
Becerra
, and
E. N.
Wang
, “
Gravitationally driven wicking for enhanced condensation heat transfer
,”
Langmuir
34
,
4658
4664
(
2018
).
37.
E.
Ölçeroğlu
,
C.-Y.
Hsieh
,
K. K. S.
Lau
, and
M.
McCarthy
, “
Thin film condensation supported on ambiphilic microstructures
,”
J. Heat Transfer
139
(
2
),
020910
(
2017
).
38.
R.
Wen
,
X.
Zhou
,
B.
Peng
,
Z.
Lan
,
R.
Yang
, and
X.
Ma
, “
Falling-droplet-enhanced filmwise condensation in the presence of non-condensable gas
,”
Int. J. Heat Mass Transfer
140
,
173
186
(
2019
).
39.
D.
Tanner
,
D.
Pope
,
C.
Potter
, and
D.
West
, “
Heat transfer in dropwise condensation at low steam pressures in the absence and presence of non-condensable gas
,”
Int. J. Heat Mass Transfer
11
(
2
),
181
190
(
1968
).
40.
A.
Tuteja
,
W.
Choi
,
J. M.
Mabry
,
G. H.
McKinley
, and
R. E.
Cohen
, “
Robust omniphobic surfaces
,”
Proc. Natl. Acad. Sci. U. S. A.
105
(
47
),
18200
18205
(
2008
).
41.
B.
Su
,
Y.
Tian
, and
L.
Jiang
, “
Bioinspired interfaces with superwettability: From materials to chemistry
,”
J. Am. Chem. Soc.
138
(
6
),
1727
1748
(
2016
).
42.
A.
Tuteja
,
W.
Choi
,
M.
Ma
,
J. M.
Mabry
,
S. A.
Mazzella
,
G. C.
Rutledge
,
G. H.
McKinley
, and
R. E.
Cohen
, “
Designing superoleophobic surfaces
,”
Science
318
(
5856
),
1618
1622
(
2007
).
43.
Z.
Chu
and
S.
Seeger
, “
Superamphiphobic surfaces
,”
Chem. Soc. Rev.
43
(
8
),
2784
2798
(
2014
).
44.
K. L.
Wilke
,
D. J.
Preston
,
Z.
Lu
, and
E. N.
Wang
, “
Toward condensation-resistant omniphobic surfaces
,”
ACS Nano
12
(
11
),
11013
11021
(
2018
).
45.
T.-S.
Wong
,
S. H.
Kang
,
S. K.
Tang
,
E. J.
Smythe
,
B. D.
Hatton
,
A.
Grinthal
, and
J.
Aizenberg
, “
Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity
,”
Nature
477
(
7365
),
443
447
(
2011
).
46.
B. R.
Solomon
,
S. B.
Subramanyam
,
T. A.
Farnham
,
K. S.
Khalil
,
S.
Anand
, and
K. K.
Varanasi
, “
Lubricant-impregnated surfaces
,” in
Non-wettable Surfaces
(
Royal Society of Chemistry
,
2016
), pp.
285
318
.
47.
A.
Lafuma
and
D.
Quéré
, “
Slippery pre-suffused surfaces
,”
Europhys. Lett.
96
(
5
),
56001
(
2011
).
48.
D. J.
Preston
,
Z.
Lu
,
Y.
Song
,
Y.
Zhao
,
K. L.
Wilke
,
D. S.
Antao
,
M.
Louis
, and
E. N.
Wang
, “
Heat transfer enhancement during water and hydrocarbon condensation on lubricant infused surfaces
,”
Sci. Rep.
8
(
1
),
1
9
(
2018
).
49.
K.
Rykaczewski
,
A. T.
Paxson
,
M.
Staymates
,
M. L.
Walker
,
X.
Sun
,
S.
Anand
,
S.
Srinivasan
,
G. H.
McKinley
,
J.
Chinn
, and
J. H. J.
Scott
, “
Dropwise condensation of low surface tension fluids on omniphobic surfaces
,”
Sci. Rep.
4
,
4158
(
2015
).
50.
S.
Sett
,
P.
Sokalski
,
K.
Boyina
,
L.
Li
,
K. F.
Rabbi
,
H.
Auby
,
T.
Foulkes
,
A.
Mahvi
,
G.
Barac
, and
L. W.
Bolton
, “
Stable dropwise condensation of ethanol and hexane on rationally designed ultrascalable nanostructured lubricant-infused surfaces
,”
Nano Lett.
19
(
8
),
5287
5296
(
2019
).
51.
J. D.
Smith
,
R.
Dhiman
,
S.
Anand
,
E.
Reza-Garduno
,
R. E.
Cohen
,
G. H.
McKinley
, and
K. K.
Varanasi
, “
Droplet mobility on lubricant-impregnated surfaces
,”
Soft Matter
9
(
6
),
1772
1780
(
2013
).
52.
S.
Anand
,
A. T.
Paxson
,
R.
Dhiman
,
J. D.
Smith
, and
K. K.
Varanasi
, “
Enhanced condensation on lubricant-impregnated nanotextured surfaces
,”
ACS Nano
6
(
11
),
10122
10129
(
2012
).
53.
S.
Sett
,
X.
Yan
,
G.
Barac
,
L. W.
Bolton
, and
N.
Miljkovic
, “
Lubricant-infused surfaces for low-surface-tension fluids: Promise versus reality
,”
ACS Appl. Mater. Interfaces
9
(
41
),
36400
36408
(
2017
).
54.
D. J.
Preston
,
Y.
Song
,
Z.
Lu
,
D. S.
Antao
, and
E. N.
Wang
, “
Design of lubricant infused surfaces
,”
ACS Appl. Mater. Interfaces
9
(
48
),
42383
42392
(
2017
).
55.
J. S.
Wexler
,
I.
Jacobi
, and
H. A.
Stone
, “
Shear-driven failure of liquid-infused surfaces
,”
Phys. Rev. Lett.
114
(
16
),
168301
(
2015
).
56.
P.
Kim
,
T.-S.
Wong
,
J.
Alvarenga
,
M. J.
Kreder
,
W. E.
Adorno-Martinez
, and
J.
Aizenberg
, “
Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance
,”
ACS Nano
6
(
8
),
6569
6577
(
2012
).
57.
K.
Rykaczewski
,
S.
Anand
,
S. B.
Subramanyam
, and
K. K.
Varanasi
, “
Mechanism of frost formation on lubricant-impregnated surfaces
,”
Langmuir
29
(
17
),
5230
5238
(
2013
).
58.
A. C.
Peterson
, Jr.
,
Dropwise Condensation of Ethylene Glycol
(
University of Illinois at Urbana-Champaign
,
1965
).
59.
R.
Wilmshurst
and
J. W.
Rose
, “
Dropwise and filmwise condensation of aniline, ethanediol and nitrobenzene
,” in
International Heat Transfer Conference Digital Library
(
Begel House, Inc.
,
1974
).
60.
R. A.
Erb
and
E.
Thelen
, “
Promoting permanent dropwise condensation
,”
Ind. Eng. Chem.
57
(
10
),
49
(
1965
).
61.
G.
Azimi
,
R.
Dhiman
,
H.-M.
Kwon
,
A. T.
Paxson
, and
K. K.
Varanasi
, “
Hydrophobicity of rare-earth oxide ceramics
,”
Nat. Mater.
12
(
4
),
315
320
(
2013
).
62.
L.
Vitos
,
A. V.
Ruban
,
H. L.
Skriver
, and
J.
Kollár
, “
The surface energy of metals
,”
Surf. Sci.
411
(
1
),
186
202
(
1998
).
63.
J. Y.
Lu
,
Q.
Ge
,
H.
Li
,
A.
Raza
, and
T.
Zhang
, “
Direct prediction of calcite surface wettability with first-principles quantum simulation
,”
J. Phys. Chem. Lett.
8
(
21
),
5309
5316
(
2017
).
64.
N.
Giovambattista
,
P. G.
Debenedetti
, and
P. J.
Rossky
, “
Effect of surface polarity on water contact angle and interfacial hydration structure
,”
J. Phys. Chem. B
111
(
32
),
9581
9587
(
2007
).
65.
N.
Giovambattista
,
P. G.
Debenedetti
, and
P. J.
Rossky
, “
Enhanced surface hydrophobicity by coupling of surface polarity and topography
,”
Proc. Natl. Acad. Sci. U. S. A.
106
(
36
),
15181
15185
(
2009
).
66.
K. T.
Butler
,
D. W.
Davies
,
H.
Cartwright
,
O.
Isayev
, and
A.
Walsh
, “
Machine learning for molecular and materials science
,”
Nature
559
(
7715
),
547
555
(
2018
).
67.
P.
Birbarah
,
S.
Chavan
, and
N.
Miljkovic
, “
Numerical simulation of jumping droplet condensation
,”
Langmuir
35
(
32
),
10309
10321
(
2019
).
68.
P.
Birbarah
and
N.
Miljkovic
, “
Internal convective jumping-droplet condensation in tubes
,”
Int. J. Heat Mass Transfer
114
,
1025
1036
(
2017
).
69.
T. L.
Liu
and
C.-J. C.
Kim
, “
Turning a surface superrepellent even to completely wetting liquids
,”
Science
346
,
1096
(
2014
).
70.
S.
Pan
,
R.
Guo
,
M.
Björnmalm
,
J. J.
Richardson
,
L.
Li
,
C.
Peng
,
N.
Bertleff-Zieschang
,
W.
Xu
,
J.
Jiang
, and
F.
Caruso
, “
Coatings super-repellent to ultralow surface tension liquids
,”
Nat. Mater.
17
(
11
),
1040
1047
(
2018
).
71.
L.
Wang
and
T. J.
McCarthy
, “
Covalently attached liquids: Instant omniphobic surfaces with unprecedented repellency
,”
Angew. Chem. Int. Ed.
55
(
1
),
244
248
(
2016
).
72.
W. S.
Wong
, “
Surface chemistry enhancements for the tunable super-liquid repellency of low-surface-tension liquids
,”
Nano Lett.
19
(
3
),
1892
1901
(
2019
).
73.
D. G.
Cahill
, “
Analysis of heat flow in layered structures for time-domain thermoreflectance
,”
Rev. Sci. Instrum.
75
(
12
),
5119
5122
(
2004
).
74.
D. G.
Cahill
, “
Thermal conductivity measurement from 30 to 750 K: The 3ω method
,”
Rev. Sci. Instrum.
61
(
2
),
802
808
(
1990
).
75.
X.
Xie
,
D.
Li
,
T.-H.
Tsai
,
J.
Liu
,
P. V.
Braun
, and
D. G.
Cahill
, “
Thermal conductivity, heat capacity, and elastic constants of water-soluble polymers and polymer blends
,”
Macromolecules
49
,
972
978
(
2016
).
76.
C. M.
Stafford
,
C.
Harrison
,
K. L.
Beers
,
A.
Karim
,
E. J.
Amis
,
M. R.
VanLandingham
,
H.-C.
Kim
,
W.
Volksen
,
R. D.
Miller
, and
E. E.
Simonyi
, “
A buckling-based metrology for measuring the elastic moduli of polymeric thin films
,”
Nat. Mater.
3
(
8
),
545
550
(
2004
).
77.
S. P.
Koenig
,
N. G.
Boddeti
,
M. L.
Dunn
, and
J. S.
Bunch
, “
Ultrastrong adhesion of graphene membranes
,”
Nat. Nanotechnol.
6
(
9
),
543
546
(
2011
).
78.
M. D.
Drory
and
J. W.
Hutchinson
, “
Measurement of the adhesion of a brittle film on a ductile substrate by indentation
,”
Proc. R. Soc. London, Ser. A
452
,
2319
2341
(
1953
).
79.
H. M.
Jensen
, “
The blister test for interface toughness measurement
,”
Eng. Fracture Mech.
40
,
475
486
(
1991
).
80.
R. C.
Thomas
,
J. E.
Houston
,
R. M.
Crooks
,
T.
Kim
, and
T. A.
Michalske
, “
Probing adhesion forces at the molecular scale
,”
J. Am. Chem. Soc.
117
(
13
),
3830
3834
(
1995
).
81.
J.
Oh
,
C. E.
Dana
,
S.
Hong
,
J. K.
Román
,
K. D.
Jo
,
J. W.
Hong
,
J.
Nguyen
,
D. M.
Cropek
,
M.
Alleyne
, and
N.
Miljkovic
, “
Exploring the role of habitat on the wettability of cicada wings
,”
ACS Appl. Mater. Interfaces
9
(
32
),
27173
27184
(
2017
).
82.
S.
Chavan
,
J.
Carpenter
,
M.
Nallapaneni
,
J. Y.
Chen
, and
N.
Miljkovic
, “
Bulk water freezing dynamics on superhydrophobic surfaces
,”
Appl. Phys. Lett.
110
(
4
),
041604
(
2017
).
83.
S. M. R.
Razavi
,
J.
Oh
,
S.
Sett
,
L.
Feng
,
X.
Yan
,
M. J.
Hoque
,
A.
Liu
,
R. T.
Haasch
,
M.
Masoomi
,
R.
Bagheri
, and
N.
Miljkovic
, “
Superhydrophobic surfaces made from naturally derived hydrophobic materials
,”
ACS Sustainable Chem. Eng.
5
(
12
),
11362
11370
(
2017
).
84.
A. A.
Günay
,
S.
Sett
,
J.
Oh
, and
N.
Miljkovic
, “
Steady method for the analysis of evaporation dynamics
,”
Langmuir
33
(
43
),
12007
12015
(
2017
).
85.
X.-H.
Ma
,
X.-D.
Zhou
,
Z.
Lan
,
Y.-M.
Li
, and
Y.
Zhang
, “
Condensation heat transfer enhancement in the presence of non-condensable gas using the interfacial effect of dropwise condensation
,”
Int. J. Heat Mass Transfer
51
(
7
),
1728
1737
(
2008
).
86.
R.
Enright
,
N.
Miljkovic
,
A.
Al-Obeidi
,
C. V.
Thompson
, and
E. N.
Wang
, “
Condensation on superhydrophobic surfaces: The role of local energy barriers and structure length scale
,”
Langmuir
28
(
40
),
14424
14432
(
2012
).
87.
D.
Beysens
, “
Dew nucleation and growth
,”
C. R. Phys.
7
(
9
),
1082
1100
(
2006
).
88.
R.
Enright
,
N.
Miljkovic
,
N.
Dou
,
Y.
Nam
, and
E. N.
Wang
, “
Condensation on superhydrophobic copper oxide nanostructures
,”
J. Heat Transfer
135
(
9
),
091304
(
2013
).
89.
J. L.
McCormick
and
J. W.
Westwater
, “
Nucleation sites for dropwise condensation
,”
Chem. Eng. Sci.
20
(
12
),
1021
1036
(
1965
).
90.
R. D.
Narhe
and
D. A.
Beysens
, “
Water condensation on a super-hydrophobic spike surface
,”
Europhys. Lett.
75
(
1
),
98
104
(
2006
).
91.
E.
Ölçeroğlu
,
C.-Y.
Hsieh
,
M. M.
Rahman
,
K. K. S.
Lau
, and
M.
McCarthy
, “
Full-field dynamic characterization of superhydrophobic condensation on biotemplated nanostructured surfaces
,”
Langmuir
30
(
25
),
7556
7566
(
2014
).
92.
T.
Takaharu
,
T.
Hiroaki
, and
T.
Shigenori
, “
Experimental verification of constriction resistance theory in dropwise condensation heat transfer
,”
Int. J. Heat Mass Transfer
34
(
11
),
2787
2796
(
1991
).
93.
S.
Toxvaerd
, “
Nucleation and droplet growth from supersaturated vapor at temperatures below the triple point temperature
,”
J. Chem. Phys.
144
(
16
),
164502
(
2016
).
94.
R.
Xiao
,
N.
Miljkovic
,
R.
Enright
, and
E. N.
Wang
, “
Immersion condensation on oil-infused heterogeneous surfaces for enhanced heat transfer
,”
Sci. Rep.
3
(
1
),
1988
(
2013
).
95.
Y.
Yamada
,
T.
Ikuta
,
T.
Nishiyama
,
K.
Takahashi
, and
Y.
Takata
, “
Droplet nucleation on a well-defined hydrophilic–hydrophobic surface of 10 nm order resolution
,”
Langmuir
30
(
48
),
14532
14537
(
2014
).
You do not currently have access to this content.