Dropwise condensation (DWC) on non-wetting surfaces has remarkable potential to enhance heat transfer performance compared to filmwise condensation on wetting substrates. In this article, we discuss important recent developments and challenges in the field of DWC, including durability of DWC-promoting coatings, DWC of low surface tension fluids, physical mechanisms governing DWC, unconventional methods to achieve DWC, and promising metrology techniques for DWC. We end the article by providing a road map detailing where we believe the community should direct both fundamental and applied efforts in order to solve the identified century-old challenges that limit DWC implementation.
REFERENCES
1.
R.
Enright
,
N.
Miljkovic
,
J. L.
Alvarado
,
K.
Kim
, and
J. W.
Rose
, “
Dropwise condensation on micro- and nanostructured surfaces
,” Nanoscale Microscale Thermophys. Eng.
18
, 223
–250
(2014
).2.
J. W.
Rose
, “
Dropwise condensation theory and experiment: A review
,” Proc. Inst. Mech. Eng., Part A
216
, 115
–128
(2002
).3.
N.
Miljkovic
and
E. N.
Wang
, “
Condensation heat transfer on superhydrophobic surfaces
,” MRS Bull.
38
, 397
–406
(2013
).4.
N.
Miljkovic
,
R.
Enright
, and
E. N.
Wang
, “
Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces
,” ACS Nano
6
(2
), 1776
–1785
(2012
).5.
J. B.
Boreyko
and
C.-H.
Chen
, “
Self-propelled dropwise condensate on superhydrophobic surfaces
,” Phys. Rev. Lett.
103
(18
), 184501
(2009
).6.
X.
Yan
,
L.
Zhang
,
S.
Sett
,
L.
Feng
,
C.
Zhao
,
Z.
Huang
,
H.
Vahabi
,
A. K.
Kota
,
F.
Chen
, and
N.
Miljkovic
, “
Droplet jumping: Effects of droplet size surface structure, pinning, liquid properties
,” ACS Nano
13
(2
), 1309
–1323
(2019
).7.
H.
Cha
,
C.
Xu
,
J.
Sotelo
,
J. M.
Chun
,
Y.
Yokoyama
,
R.
Enright
, and
N.
Miljkovic
, “
Coalescence-induced nanodroplet jumping
,” Phys. Rev. Fluids
1
(6
), 064102
(2016
).8.
N.
Miljkovic
,
R.
Enright
,
Y.
Nam
,
K.
Lopez
,
N.
Dou
,
J.
Sack
, and
E. N.
Wang
, “
Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces
,” Nano Lett.
13
(1
), 179
–187
(2013
).9.
X.
Yan
,
F.
Chen
,
S.
Sett
,
S.
Chavan
,
H.
Li
,
L.
Feng
,
L.
Li
,
F.
Zhao
,
C.
Zhao
,
Z.
Huang
, and
N.
Miljkovic
, “
Hierarchical condensation
,” ACS Nano
13
(7
), 8169
–8184
(2019
).10.
A. T.
Paxson
,
J. L.
Yagüe
,
K. K.
Gleason
, and
K. K.
Varanasi
, “
Stable dropwise condensation for enhancing heat transfer via the initiated chemical vapor deposition (iCVD) of grafted polymer films
,” Adv. Mater.
26
, 418
–423
(2014
).11.
H.
Ishida
and
J. L.
Koenig
, “
Effect of hydrolysis and drying on the siloxane bonds of a silane coupling agent deposited on e-glass fibers
,” J. Polym. Sci.: Polym. Phys. Ed.
18
(2
), 233
–237
(1980
).12.
G.
Yang
,
N. A.
Amro
,
Z. B.
Starkewolfe
, and
G-Y
Liu
, “
Molecular-level approach to inhibit degradations of alkanethiol self-assembled monolayers in aqueous media
,” Langmuir
20
(10
), 3995
–4003
(2004
).13.
K. M.
Holden
,
A. S.
Wanniarachchi
,
P. J.
Marto
,
D. H.
Boone
, and
J. W.
Rose
, “
The use of organic coatings to promote dropwise condensation of steam
,” J. Heat Transfer
109
, 768
–774
(1987
).14.
P. J.
Marto
,
D. J.
Looney
,
J. W.
Rose
, and
A. S.
Wanniarachchi
, “
Evaluation of organic coatings for the promotion of dropwise condensation of steam
,” Int. J. Heat Mass Transfer
29
, 1109
–1117
(1986
).15.
H. C.
Chang
,
M. C.
Rajagopal
,
M. J.
Hoque
,
J.
Oh
,
L.
Li
,
J.
Li
,
H.
Zhao
,
G.
Kuntumalla
,
S.
Sundar
,
Y.
Meng
,
C.
Shao
,
P. M.
Ferreira
,
S. M.
Salapaka
,
S.
Sinha
, and
N.
Miljkovic
, “
Composite structured surfaces for durable dropwise condensation
,” Int. J. Heat Mass Transfer
(published online 2020
).16.
J.
Ma
,
H.
Cha
,
M.-K.
Kim
,
D. G.
Cahill
, and
N.
Miljkovic
, “
Condensation induced delamination of nanoscale hydrophobic films
,” Adv. Funct. Mater.
29
(43
), 1905222
(2019
).17.
J.
Ma
,
D. G.
Cahill
, and
N.
Miljkovic
, “
Condensation induced blistering as a measurement technique for the adhesion energy of nanoscale polymer films
,” Nano Lett.
20
(5
), 3918
–3924
(2020
).18.
S. R.
White
,
N. R.
Sottos
,
P. H.
Geubelle
,
J. S.
Moore
,
M. R.
Kessler
,
S. R.
Sriram
,
E. N.
Brown
, and
S.
Viswanathan
, “
Autonomic healing of polymer composites
,” Nature
409
(6822
), 794
–797
(2001
).19.
B. B.
Jing
and
C. M.
Evans
, “
Catalyst-free dynamic networks for recyclable, self-healing solid polymer electrolytes
,” J. Am. Chem. Soc.
141
(48
), 18932
–18937
(2019
).20.
H.
Cha
,
A.
Wu
,
M.-K.
Kim
,
K.
Saigusa
,
A.
Liu
, and
N.
Miljkovic
, “
Nanoscale-agglomerate-mediated heterogeneous nucleation
,” Nano Lett.
17
(12
), 7544
–7551
(2017
).21.
B. C.
McDonald
,
J. A.
de Gouw
,
J. B.
Gilman
,
S. H.
Jathar
,
A.
Akherati
,
C. D.
Cappa
,
J. L.
Jimenez
,
J.
Lee-Taylor
,
P. L.
Hayes
,
S. A.
McKeen
,
Y. Y.
Cui
,
S.-W.
Kim
,
D. R.
Gentner
,
G.
Isaacman-VanWertz
,
A. H.
Goldstein
,
R. A.
Harley
,
G. J.
Frost
,
J. M.
Roberts
,
T. B.
Ryerson
, and
M.
Trainer
, “
Volatile chemical products emerging as largest petrochemical source of urban organic emissions
,” Science
359
(6377
), 760
(2018
).22.
S.
Gligorovski
and
J. P. D.
Abbatt
, “
An indoor chemical cocktail
,” Science
359
(6376
), 632
(2018
).23.
F. E.
Bartell
and
P. H.
Cardwell
, “
Reproducible contact angles on reproducible metal surfaces. I. Contact angles of water against silver and gold
,” J. Am. Chem. Soc.
64
(3
), 494
–497
(1942
).24.
R. A.
Erb
, “
Wettability of metals under continuous condensing conditions
,” J. Phys. Chem.
69
(4
), 1306
–1309
(1965
).25.
D. W.
Woodruff
and
J. W.
Westwater
, “
Steam condensation on electroplated gold: Effect of plating thickness
,” Int. J. Heat Mass Transfer
22
(4
), 629
–632
(1979
).26.
D. J.
Preston
,
N.
Miljkovic
,
J.
Sack
,
R.
Enright
,
J.
Queeney
, and
E. N.
Wang
, “
Effect of hydrocarbon adsorption on the wettability of rare earth oxide ceramics
,” Appl. Phys. Lett.
105
(1
), 011601
(2014
).27.
X.
Yan
,
Z.
Huang
,
S.
Sett
,
J.
Oh
,
H.
Cha
,
L.
Li
,
L.
Feng
,
Y.
Wu
,
C.
Zhao
,
D.
Orejon
,
F.
Chen
, and
N.
Miljkovic
, “
Atmosphere-mediated superhydrophobicity of rationally designed micro/nanostructured surfaces
,” ACS Nano
13
(4
), 4160
–4173
(2019
).28.
D.
Orejon
,
A.
Askounis
,
Y.
Takata
, and
D.
Attinger
, “
Dropwise condensation on multiscale bioinspired metallic surfaces with nanofeatures
,” ACS Appl. Mater. Interfaces
11
(27
), 24735
–24750
(2019
).29.
P. G.
de Gennes
, “
Wetting: Statics and dynamics
,” Rev. Mod. Phys.
57
(3
), 827
–863
(1985
).30.
H.
Cha
,
H.
Vahabi
,
A.
Wu
,
S.
Chavan
,
M.-K.
Kim
,
S.
Sett
,
S. A.
Bosch
,
W.
Wang
,
A. K.
Kota
, and
N.
Miljkovic
, “
Dropwise condensation on solid hydrophilic surfaces
,” Sci. Adv.
6
(2
), eaax0746
(2020
).31.
L.
Gao
and
T. J.
McCarthy
, “
Contact angle hysteresis explained
,” Langmuir
22
(14
), 6234
–6237
(2006
).32.
H.
Cha
,
J.
Ma
,
Y. S.
Kim
,
L.
Li
,
L.
Sun
,
J.
Tong
, and
N.
Miljkovic
, “
In situ droplet microgoniometry using optical microscopy
,” ACS Nano
13
(11
), 13343
–13353
(2019
).33.
J.
Oh
,
R.
Zhang
,
P. P.
Shetty
,
J. A.
Krogstad
,
P. V.
Braun
, and
N.
Miljkovic
, “
Thin film condensation on nanostructured surfaces
,” Adv. Funct. Mater.
28
, 1707000
(2018
).34.
D.
Orejon
,
O.
Shardt
,
N. S. K.
Gunda
,
T.
Ikuta
,
K.
Takahashi
,
Y.
Takata
, and
S. K.
Mitra
, “
Simultaneous dropwise and filmwise condensation on hydrophilic microstructured surfaces
,” Int. J. Heat Mass Transfer
114
, 187
–197
(2017
).35.
R.
Wang
and
D. S.
Antao
, “
Capillary-enhanced filmwise condensation in porous media
,” Langmuir
34
(46
), 13855
–13863
(2018
).36.
D. J.
Preston
,
K. L.
Wilke
,
Z.
Lu
,
S. S.
Cruz
,
Y.
Zhao
,
L. L.
Becerra
, and
E. N.
Wang
, “
Gravitationally driven wicking for enhanced condensation heat transfer
,” Langmuir
34
, 4658
–4664
(2018
).37.
E.
Ölçeroğlu
,
C.-Y.
Hsieh
,
K. K. S.
Lau
, and
M.
McCarthy
, “
Thin film condensation supported on ambiphilic microstructures
,” J. Heat Transfer
139
(2
), 020910
(2017
).38.
R.
Wen
,
X.
Zhou
,
B.
Peng
,
Z.
Lan
,
R.
Yang
, and
X.
Ma
, “
Falling-droplet-enhanced filmwise condensation in the presence of non-condensable gas
,” Int. J. Heat Mass Transfer
140
, 173
–186
(2019
).39.
D.
Tanner
,
D.
Pope
,
C.
Potter
, and
D.
West
, “
Heat transfer in dropwise condensation at low steam pressures in the absence and presence of non-condensable gas
,” Int. J. Heat Mass Transfer
11
(2
), 181
–190
(1968
).40.
A.
Tuteja
,
W.
Choi
,
J. M.
Mabry
,
G. H.
McKinley
, and
R. E.
Cohen
, “
Robust omniphobic surfaces
,” Proc. Natl. Acad. Sci. U. S. A.
105
(47
), 18200
–18205
(2008
).41.
B.
Su
,
Y.
Tian
, and
L.
Jiang
, “
Bioinspired interfaces with superwettability: From materials to chemistry
,” J. Am. Chem. Soc.
138
(6
), 1727
–1748
(2016
).42.
A.
Tuteja
,
W.
Choi
,
M.
Ma
,
J. M.
Mabry
,
S. A.
Mazzella
,
G. C.
Rutledge
,
G. H.
McKinley
, and
R. E.
Cohen
, “
Designing superoleophobic surfaces
,” Science
318
(5856
), 1618
–1622
(2007
).43.
Z.
Chu
and
S.
Seeger
, “
Superamphiphobic surfaces
,” Chem. Soc. Rev.
43
(8
), 2784
–2798
(2014
).44.
K. L.
Wilke
,
D. J.
Preston
,
Z.
Lu
, and
E. N.
Wang
, “
Toward condensation-resistant omniphobic surfaces
,” ACS Nano
12
(11
), 11013
–11021
(2018
).45.
T.-S.
Wong
,
S. H.
Kang
,
S. K.
Tang
,
E. J.
Smythe
,
B. D.
Hatton
,
A.
Grinthal
, and
J.
Aizenberg
, “
Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity
,” Nature
477
(7365
), 443
–447
(2011
).46.
B. R.
Solomon
,
S. B.
Subramanyam
,
T. A.
Farnham
,
K. S.
Khalil
,
S.
Anand
, and
K. K.
Varanasi
, “
Lubricant-impregnated surfaces
,” in Non-wettable Surfaces
(
Royal Society of Chemistry
, 2016
), pp. 285
–318
.47.
A.
Lafuma
and
D.
Quéré
, “
Slippery pre-suffused surfaces
,” Europhys. Lett.
96
(5
), 56001
(2011
).48.
D. J.
Preston
,
Z.
Lu
,
Y.
Song
,
Y.
Zhao
,
K. L.
Wilke
,
D. S.
Antao
,
M.
Louis
, and
E. N.
Wang
, “
Heat transfer enhancement during water and hydrocarbon condensation on lubricant infused surfaces
,” Sci. Rep.
8
(1
), 1
–9
(2018
).49.
K.
Rykaczewski
,
A. T.
Paxson
,
M.
Staymates
,
M. L.
Walker
,
X.
Sun
,
S.
Anand
,
S.
Srinivasan
,
G. H.
McKinley
,
J.
Chinn
, and
J. H. J.
Scott
, “
Dropwise condensation of low surface tension fluids on omniphobic surfaces
,” Sci. Rep.
4
, 4158
(2015
).50.
S.
Sett
,
P.
Sokalski
,
K.
Boyina
,
L.
Li
,
K. F.
Rabbi
,
H.
Auby
,
T.
Foulkes
,
A.
Mahvi
,
G.
Barac
, and
L. W.
Bolton
, “
Stable dropwise condensation of ethanol and hexane on rationally designed ultrascalable nanostructured lubricant-infused surfaces
,” Nano Lett.
19
(8
), 5287
–5296
(2019
).51.
J. D.
Smith
,
R.
Dhiman
,
S.
Anand
,
E.
Reza-Garduno
,
R. E.
Cohen
,
G. H.
McKinley
, and
K. K.
Varanasi
, “
Droplet mobility on lubricant-impregnated surfaces
,” Soft Matter
9
(6
), 1772
–1780
(2013
).52.
S.
Anand
,
A. T.
Paxson
,
R.
Dhiman
,
J. D.
Smith
, and
K. K.
Varanasi
, “
Enhanced condensation on lubricant-impregnated nanotextured surfaces
,” ACS Nano
6
(11
), 10122
–10129
(2012
).53.
S.
Sett
,
X.
Yan
,
G.
Barac
,
L. W.
Bolton
, and
N.
Miljkovic
, “
Lubricant-infused surfaces for low-surface-tension fluids: Promise versus reality
,” ACS Appl. Mater. Interfaces
9
(41
), 36400
–36408
(2017
).54.
D. J.
Preston
,
Y.
Song
,
Z.
Lu
,
D. S.
Antao
, and
E. N.
Wang
, “
Design of lubricant infused surfaces
,” ACS Appl. Mater. Interfaces
9
(48
), 42383
–42392
(2017
).55.
J. S.
Wexler
,
I.
Jacobi
, and
H. A.
Stone
, “
Shear-driven failure of liquid-infused surfaces
,” Phys. Rev. Lett.
114
(16
), 168301
(2015
).56.
P.
Kim
,
T.-S.
Wong
,
J.
Alvarenga
,
M. J.
Kreder
,
W. E.
Adorno-Martinez
, and
J.
Aizenberg
, “
Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance
,” ACS Nano
6
(8
), 6569
–6577
(2012
).57.
K.
Rykaczewski
,
S.
Anand
,
S. B.
Subramanyam
, and
K. K.
Varanasi
, “
Mechanism of frost formation on lubricant-impregnated surfaces
,” Langmuir
29
(17
), 5230
–5238
(2013
).58.
A. C.
Peterson
, Jr.
, Dropwise Condensation of Ethylene Glycol
(
University of Illinois at Urbana-Champaign
, 1965
).59.
R.
Wilmshurst
and
J. W.
Rose
, “
Dropwise and filmwise condensation of aniline, ethanediol and nitrobenzene
,” in International Heat Transfer Conference Digital Library
(
Begel House, Inc.
, 1974
).60.
R. A.
Erb
and
E.
Thelen
, “
Promoting permanent dropwise condensation
,” Ind. Eng. Chem.
57
(10
), 49
(1965
).61.
G.
Azimi
,
R.
Dhiman
,
H.-M.
Kwon
,
A. T.
Paxson
, and
K. K.
Varanasi
, “
Hydrophobicity of rare-earth oxide ceramics
,” Nat. Mater.
12
(4
), 315
–320
(2013
).62.
L.
Vitos
,
A. V.
Ruban
,
H. L.
Skriver
, and
J.
Kollár
, “
The surface energy of metals
,” Surf. Sci.
411
(1
), 186
–202
(1998
).63.
J. Y.
Lu
,
Q.
Ge
,
H.
Li
,
A.
Raza
, and
T.
Zhang
, “
Direct prediction of calcite surface wettability with first-principles quantum simulation
,” J. Phys. Chem. Lett.
8
(21
), 5309
–5316
(2017
).64.
N.
Giovambattista
,
P. G.
Debenedetti
, and
P. J.
Rossky
, “
Effect of surface polarity on water contact angle and interfacial hydration structure
,” J. Phys. Chem. B
111
(32
), 9581
–9587
(2007
).65.
N.
Giovambattista
,
P. G.
Debenedetti
, and
P. J.
Rossky
, “
Enhanced surface hydrophobicity by coupling of surface polarity and topography
,” Proc. Natl. Acad. Sci. U. S. A.
106
(36
), 15181
–15185
(2009
).66.
K. T.
Butler
,
D. W.
Davies
,
H.
Cartwright
,
O.
Isayev
, and
A.
Walsh
, “
Machine learning for molecular and materials science
,” Nature
559
(7715
), 547
–555
(2018
).67.
P.
Birbarah
,
S.
Chavan
, and
N.
Miljkovic
, “
Numerical simulation of jumping droplet condensation
,” Langmuir
35
(32
), 10309
–10321
(2019
).68.
P.
Birbarah
and
N.
Miljkovic
, “
Internal convective jumping-droplet condensation in tubes
,” Int. J. Heat Mass Transfer
114
, 1025
–1036
(2017
).69.
T. L.
Liu
and
C.-J. C.
Kim
, “
Turning a surface superrepellent even to completely wetting liquids
,” Science
346
, 1096
(2014
).70.
S.
Pan
,
R.
Guo
,
M.
Björnmalm
,
J. J.
Richardson
,
L.
Li
,
C.
Peng
,
N.
Bertleff-Zieschang
,
W.
Xu
,
J.
Jiang
, and
F.
Caruso
, “
Coatings super-repellent to ultralow surface tension liquids
,” Nat. Mater.
17
(11
), 1040
–1047
(2018
).71.
L.
Wang
and
T. J.
McCarthy
, “
Covalently attached liquids: Instant omniphobic surfaces with unprecedented repellency
,” Angew. Chem. Int. Ed.
55
(1
), 244
–248
(2016
).72.
W. S.
Wong
, “
Surface chemistry enhancements for the tunable super-liquid repellency of low-surface-tension liquids
,” Nano Lett.
19
(3
), 1892
–1901
(2019
).73.
D. G.
Cahill
, “
Analysis of heat flow in layered structures for time-domain thermoreflectance
,” Rev. Sci. Instrum.
75
(12
), 5119
–5122
(2004
).74.
D. G.
Cahill
, “
Thermal conductivity measurement from 30 to 750 K: The 3ω method
,” Rev. Sci. Instrum.
61
(2
), 802
–808
(1990
).75.
X.
Xie
,
D.
Li
,
T.-H.
Tsai
,
J.
Liu
,
P. V.
Braun
, and
D. G.
Cahill
, “
Thermal conductivity, heat capacity, and elastic constants of water-soluble polymers and polymer blends
,” Macromolecules
49
, 972
–978
(2016
).76.
C. M.
Stafford
,
C.
Harrison
,
K. L.
Beers
,
A.
Karim
,
E. J.
Amis
,
M. R.
VanLandingham
,
H.-C.
Kim
,
W.
Volksen
,
R. D.
Miller
, and
E. E.
Simonyi
, “
A buckling-based metrology for measuring the elastic moduli of polymeric thin films
,” Nat. Mater.
3
(8
), 545
–550
(2004
).77.
S. P.
Koenig
,
N. G.
Boddeti
,
M. L.
Dunn
, and
J. S.
Bunch
, “
Ultrastrong adhesion of graphene membranes
,” Nat. Nanotechnol.
6
(9
), 543
–546
(2011
).78.
M. D.
Drory
and
J. W.
Hutchinson
, “
Measurement of the adhesion of a brittle film on a ductile substrate by indentation
,” Proc. R. Soc. London, Ser. A
452
, 2319
–2341
(1953
).79.
H. M.
Jensen
, “
The blister test for interface toughness measurement
,” Eng. Fracture Mech.
40
, 475
–486
(1991
).80.
R. C.
Thomas
,
J. E.
Houston
,
R. M.
Crooks
,
T.
Kim
, and
T. A.
Michalske
, “
Probing adhesion forces at the molecular scale
,” J. Am. Chem. Soc.
117
(13
), 3830
–3834
(1995
).81.
J.
Oh
,
C. E.
Dana
,
S.
Hong
,
J. K.
Román
,
K. D.
Jo
,
J. W.
Hong
,
J.
Nguyen
,
D. M.
Cropek
,
M.
Alleyne
, and
N.
Miljkovic
, “
Exploring the role of habitat on the wettability of cicada wings
,” ACS Appl. Mater. Interfaces
9
(32
), 27173
–27184
(2017
).82.
S.
Chavan
,
J.
Carpenter
,
M.
Nallapaneni
,
J. Y.
Chen
, and
N.
Miljkovic
, “
Bulk water freezing dynamics on superhydrophobic surfaces
,” Appl. Phys. Lett.
110
(4
), 041604
(2017
).83.
S. M. R.
Razavi
,
J.
Oh
,
S.
Sett
,
L.
Feng
,
X.
Yan
,
M. J.
Hoque
,
A.
Liu
,
R. T.
Haasch
,
M.
Masoomi
,
R.
Bagheri
, and
N.
Miljkovic
, “
Superhydrophobic surfaces made from naturally derived hydrophobic materials
,” ACS Sustainable Chem. Eng.
5
(12
), 11362
–11370
(2017
).84.
A. A.
Günay
,
S.
Sett
,
J.
Oh
, and
N.
Miljkovic
, “
Steady method for the analysis of evaporation dynamics
,” Langmuir
33
(43
), 12007
–12015
(2017
).85.
X.-H.
Ma
,
X.-D.
Zhou
,
Z.
Lan
,
Y.-M.
Li
, and
Y.
Zhang
, “
Condensation heat transfer enhancement in the presence of non-condensable gas using the interfacial effect of dropwise condensation
,” Int. J. Heat Mass Transfer
51
(7
), 1728
–1737
(2008
).86.
R.
Enright
,
N.
Miljkovic
,
A.
Al-Obeidi
,
C. V.
Thompson
, and
E. N.
Wang
, “
Condensation on superhydrophobic surfaces: The role of local energy barriers and structure length scale
,” Langmuir
28
(40
), 14424
–14432
(2012
).87.
D.
Beysens
, “
Dew nucleation and growth
,” C. R. Phys.
7
(9
), 1082
–1100
(2006
).88.
R.
Enright
,
N.
Miljkovic
,
N.
Dou
,
Y.
Nam
, and
E. N.
Wang
, “
Condensation on superhydrophobic copper oxide nanostructures
,” J. Heat Transfer
135
(9
), 091304
(2013
).89.
J. L.
McCormick
and
J. W.
Westwater
, “
Nucleation sites for dropwise condensation
,” Chem. Eng. Sci.
20
(12
), 1021
–1036
(1965
).90.
R. D.
Narhe
and
D. A.
Beysens
, “
Water condensation on a super-hydrophobic spike surface
,” Europhys. Lett.
75
(1
), 98
–104
(2006
).91.
E.
Ölçeroğlu
,
C.-Y.
Hsieh
,
M. M.
Rahman
,
K. K. S.
Lau
, and
M.
McCarthy
, “
Full-field dynamic characterization of superhydrophobic condensation on biotemplated nanostructured surfaces
,” Langmuir
30
(25
), 7556
–7566
(2014
).92.
T.
Takaharu
,
T.
Hiroaki
, and
T.
Shigenori
, “
Experimental verification of constriction resistance theory in dropwise condensation heat transfer
,” Int. J. Heat Mass Transfer
34
(11
), 2787
–2796
(1991
).93.
S.
Toxvaerd
, “
Nucleation and droplet growth from supersaturated vapor at temperatures below the triple point temperature
,” J. Chem. Phys.
144
(16
), 164502
(2016
).94.
R.
Xiao
,
N.
Miljkovic
,
R.
Enright
, and
E. N.
Wang
, “
Immersion condensation on oil-infused heterogeneous surfaces for enhanced heat transfer
,” Sci. Rep.
3
(1
), 1988
(2013
).95.
Y.
Yamada
,
T.
Ikuta
,
T.
Nishiyama
,
K.
Takahashi
, and
Y.
Takata
, “
Droplet nucleation on a well-defined hydrophilic–hydrophobic surface of 10 nm order resolution
,” Langmuir
30
(48
), 14532
–14537
(2014
).©2020 Authors. Published by AIP Publishing.
2020
Author(s)
You do not currently have access to this content.