During pool boiling, a significantly high heat flux leads to the transition from nucleate boiling to film boiling, where a vapor film forms over the boiling surface, drastically increasing thermal resistance. This transition at the critical heat flux (CHF) results in an abrupt increase in surface temperature and can lead to catastrophic failure of the boiler. However, reported CHF values vary greatly, even for smooth surfaces of the same material; for example, the CHF values on flat silicon and silicon dioxide surfaces vary across studies by up to 49% and 84%, respectively. Here, we address this discrepancy by accounting for hydrocarbon adsorption on boiling surface. Hydrocarbon adsorption on smooth boiling surfaces decreases surface wettability, hindering the ability to maintain liquid contact with the surface and, thus, lowering the pool boiling CHF. To investigate hydrocarbon adsorption kinetics under ambient conditions and the subsequent effect on CHF, we cleaned flat silicon dioxide samples with argon plasma to remove hydrocarbon contaminants and then exposed them to laboratory air for different periods of time before conducting pool boiling experiments. Pool boiling results along with x-ray photoelectron spectroscopy data showed that the amount of adsorbed hydrocarbon increased with exposure time in air, which resulted in a decrease in wettability and, accordingly, a decrease in CHF. This work has important implications for understanding the spread in CHF values reported in the literature and may serve as a guideline for the preparation of boiling surfaces to achieve consistent experimental results.

1.
H. J.
Cho
,
D. J.
Preston
,
Y.
Zhu
, and
E. N.
Wang
,
Nat. Rev. Mater.
2
,
16092
(
2016
).
2.
D. J.
Preston
,
D. L.
Mafra
,
N.
Miljkovic
,
J.
Kong
, and
E. N.
Wang
,
Nano Lett.
15
,
2902
(
2015
).
3.
K. L.
Wilke
,
D. J.
Preston
,
Z.
Lu
, and
E. N.
Wang
,
ACS Nano
12
,
11013
(
2018
).
4.
S. G.
Kandlikar
,
J. Heat Transfer
123
,
1071
(
2001
).
5.
I. L.
Pioro
,
W.
Rohsenow
, and
S. S.
Doerffer
,
Int. J. Heat Mass Transfer
47
,
5033
(
2004
).
6.
S.
Nukiyama
,
J. Jpn. Soc. Mech. Eng.
37
,
367
(
1934
).
7.
Z.
Yao
,
Y. W.
Lu
, and
S. G.
Kandlikar
,
Int. J. Therm. Sci.
50
,
2084
(
2011
).
8.
M. M.
Rahman
,
E.
Ölçeroğlu
, and
M.
McCarthy
,
Adv. Mater. Interfaces
1
,
1300107
(
2014
).
9.
S. H.
Kim
,
G. C.
Lee
,
J. Y.
Kang
,
K.
Moriyama
,
M. H.
Kim
, and
H. S.
Park
,
Int. J. Heat Mass Transfer
91
,
1140
(
2015
).
10.
D. I.
Shim
,
G.
Choi
,
N.
Lee
,
T.
Kim
,
B. S.
Kim
, and
H. H.
Cho
,
ACS Appl. Mater. Interfaces
9
,
17595
(
2017
).
11.
A.
Zou
and
S. C.
Maroo
,
Appl. Phys. Lett.
103
,
221602
(
2013
).
12.
B. S.
Kim
,
H.
Lee
,
S.
Shin
,
G.
Choi
, and
H. H.
Cho
,
Appl. Phys. Lett.
105
,
191601
(
2014
).
13.
R.
Chen
,
M.-C.
Lu
,
V.
Srinivasan
,
Z.
Wang
,
H. H.
Cho
, and
A.
Majumdar
,
Nano Lett.
9
,
548
(
2009
).
14.
N. S.
Dhillon
,
J.
Buongiorno
, and
K. K.
Varanasi
,
Nat. Commun.
6
,
8247
(
2015
).
15.
A. R.
Betz
,
J.
Jenkins
,
C.-J. C.
Kim
, and
D.
Attinger
,
Int. J. Heat Mass Transfer
57
,
733
(
2013
).
16.
A. R.
Betz
,
J.
Xu
,
H.
Qiu
, and
D.
Attinger
,
Appl. Phys. Lett.
97
,
141909
(
2010
).
17.
H. S.
Ahn
,
J. M.
Kim
,
M.
Kaviany
, and
M. H.
Kim
,
Int. J. Heat Mass Transfer
74
,
501
(
2014
).
18.
K.-H.
Chu
,
R.
Enright
, and
E. N.
Wang
,
Appl. Phys. Lett.
100
,
241603
(
2012
).
19.
A.
Zou
,
D. P.
Singh
, and
S. C.
Maroo
,
Langmuir
32
,
10808
(
2016
).
20.
H.
Jo
,
S.
Kim
,
H. S.
Park
, and
M. H.
Kim
,
Int. J. Multiphase Flow
62
,
101
(
2014
).
21.
H. S.
Ahn
,
J. M.
Kim
,
C.
Park
,
J.-W.
Jang
,
J. S.
Lee
,
H.
Kim
,
M.
Kaviany
, and
M. H.
Kim
,
Sci. Rep.
3
,
1960
(
2013
).
22.
H.
Seo
,
Y.
Lim
,
H.
Shin
, and
I. C.
Bang
,
Int. J. Heat Mass Transfer
120
,
587
(
2018
).
23.
H.
Jo
,
D. I.
Yu
,
H.
Noh
,
H. S.
Park
, and
M. H.
Kim
,
Appl. Phys. Lett.
106
,
181602
(
2015
).
24.
H.
O'Hanley
,
C.
Coyle
,
J.
Buongiorno
,
T.
McKrell
,
L.-W.
Hu
,
M.
Rubner
, and
R.
Cohen
,
Appl. Phys. Lett.
103
,
024102
(
2013
).
25.
D. E.
Kim
,
S. C.
Park
,
D. I.
Yu
,
M. H.
Kim
, and
H. S.
Ahn
,
Appl. Phys. Lett.
107
,
023903
(
2015
).
26.
M. L.
White
,
The Detection and Control of Organic Contaminants on Surfaces
(
Marcel Dekker
,
New York
,
1970
).
27.
R. A.
Erb
,
J. Phys. Chem.
69
,
1306
(
1965
).
28.
F. M.
Fowkes
,
Ind. Eng. Chem.
56
,
40
(
1964
).
29.
K. W.
Bewig
and
W. A.
Zisman
,
J. Phys. Chem.
69
,
4238
(
1965
).
30.
M. K.
Bernett
and
W. A.
Zisman
,
J. Phys. Chem.
74
,
2309
(
1970
).
31.
T.
Smith
,
J. Colloid Interface Sci.
75
,
51
(
1980
).
32.
G. L.
Gaines
,
J. Colloid Interface Sci.
79
,
295
(
1981
).
33.
M. E.
Schrader
,
J. Colloid Interface Sci.
100
,
372
(
1984
).
34.
S.
Takeda
,
M.
Fukawa
,
Y.
Hayashi
, and
K.
Matsumoto
,
Thin Solid Films
339
,
220
(
1999
).
35.
B. R.
Strohmeier
,
J. Vac. Sci. Technol., A
7
,
3238
(
1989
).
36.
P.
Gregorčič
,
ACS Appl. Mater. Interfaces
12
,
24419
24431
(
2020
).
37.
A.
Seshadri
,
E. C.
Forrest
, and
K.
Shirvan
,
Appl. Surf. Sci.
514
,
145935
(
2020
).
38.
D. V.
Ta
,
A.
Dunn
,
T. J.
Wasley
,
R. W.
Kay
,
J.
Stringer
,
P. J.
Smith
,
C.
Connaughton
, and
J. D.
Shephard
,
Appl. Surf. Sci.
357
,
248
(
2015
).
39.
L. B.
Boinovich
,
A. M.
Emelyanenko
,
K. A.
Emelyanenko
,
A. G.
Domantovsky
, and
A. A.
Shiryaev
,
Appl. Surf. Sci.
379
,
111
(
2016
).
40.
J.
Long
,
M.
Zhong
,
P.
Fan
,
D.
Gong
, and
H.
Zhang
,
J. Laser Appl.
27
,
S29107
(
2015
).
41.
V. D.
Ta
,
A.
Dunn
,
T. J.
Wasley
,
J.
Li
,
R. W.
Kay
,
J.
Stringer
,
P. J.
Smith
,
E.
Esenturk
,
C.
Connaughton
, and
J. D.
Shephard
,
Appl. Surf. Sci.
371
,
583
(
2016
).
42.
X.
Yan
,
Z.
Huang
,
S.
Sett
,
J.
Oh
,
H.
Cha
,
L.
Li
,
L.
Feng
,
Y.
Wu
,
C.
Zhao
,
D.
Orejon
,
F.
Chen
, and
N.
Miljkovic
,
ACS Nano
13
,
4160
(
2019
).
43.
Z.
Li
,
Y.
Wang
,
A.
Kozbial
,
G.
Shenoy
,
F.
Zhou
,
R.
McGinley
,
P.
Ireland
,
B.
Morganstein
,
A.
Kunkel
,
S. P.
Surwade
,
L.
Li
, and
H.
Liu
,
Nat. Mater.
12
,
925
(
2013
).
44.
K.
Xu
and
J. R.
Heath
,
Nat. Mater.
12
,
872
(
2013
).
45.
D. J.
Preston
,
N.
Miljkovic
,
J.
Sack
,
R.
Enright
,
J.
Queeney
, and
E. N.
Wang
,
Appl. Phys. Lett.
105
,
011601
(
2014
).
46.
N. S.
Saadi
,
L. B.
Hassan
, and
T.
Karabacak
,
Sci. Rep.
7
,
7158
(
2017
).
47.
M.
Može
,
M.
Zupančič
,
M.
Hočevar
,
I.
Golobič
, and
P.
Gregorčič
,
Appl. Surf. Sci.
490
,
220
(
2019
).
48.
R.
Nickerson
, in paper presented at the
Polymers, Laminations and Coatings Conference
, San Francisco, California, USA (
1998
), pp.
1101
1108
.
49.
S. Y.
Kim
,
K.
Hong
,
K.
Kim
,
H. K.
Yu
,
W.-K.
Kim
, and
J.-L.
Lee
,
J. Appl. Phys.
103
,
076101
(
2008
).
50.
I.
Umezu
,
K.
Kohno
,
K.
Aoki
,
Y.
Kohama
,
A.
Sugimura
, and
M.
Inada
,
Vacuum
66
,
453
(
2002
).
51.
C. H.
Wang
and
V. K.
Dhir
,
J. Heat Transfer
115
,
659
(
1993
).
52.
N. I.
Kolev
,
Exp. Therm. Fluid Sci.
10
,
370
(
1995
).
53.
K. M.
Balss
,
C. T.
Avedisian
,
R. E.
Cavicchi
, and
M. J.
Tarlov
,
Langmuir
21
,
10459
(
2005
).
54.
M.
Može
,
M.
Senegačnik
,
P.
Gregorčič
,
M.
Hočevar
,
M.
Zupančič
, and
I.
Golobič
,
ACS Appl. Mater. Interfaces
12
,
24419
(
2020
).
55.
T. P.
Allred
,
J. A.
Weibel
, and
S. V.
Garimella
,
Phys. Rev. Lett.
120
,
174501
(
2018
).
56.
I.
Langmuir
,
J. Am. Chem. Soc.
40
,
1361
(
1918
).
57.
M.
Phillips
,
Anal. Biochem.
247
,
272
(
1997
).
58.
J.
Dewulf
and
H.
Van Langenhove
, “
Hydrocarbons in the atmosphere
” (
Eolss Publishers
,
Oxford, UK
,
2009
), Vol.
2
, p.
1
.
59.
E.
Robinson
,
Pure Appl. Geophys.
116
,
372
(
1978
).
60.
C. J.
Illing
,
C.
Hallmann
,
K. E.
Miller
,
R. E.
Summons
, and
H.
Strauss
,
Org. Geochem.
76
,
26
(
2014
).

Supplementary Material

You do not currently have access to this content.