The presence of liquid water in frozen media impacts the strength of soils, the growth of frost heave, plant life and microbial activities, or the durability of infrastructures in cold regions. If the effect of confinement alone on freezing is well known, water is never pure and solutes depressing the freezing point are naturally found. However, the combination of confinement and solute is poorly understood. Here, we study in situ the freezing of water in a model porous medium made of densely packed particles with various salt (KCl) concentrations. We demonstrate a synergistic effect of solute with confinement: the freezing front, initially heterogeneous due to confinement, drives solute enrichment in the remaining liquid, further depressing its freezing point. This increases the local freezing point depression and results in much larger mushy layers where ice and liquid water coexist. We compare our experimental freezing profile with theory and estimate the local solute concentration to increase by more than one order of magnitude through the freezing process. These results imply that even low solute concentrations may have important effects on the distribution of water in frozen porous media and should help explain the variety of freezing patterns observed experimentally. This may be critical for cryo-tolerance of construction materials and organisms and will help understanding solute precipitation and redistribution in soils.
Skip Nav Destination
Solute strongly impacts freezing under confinement
Article navigation
22 June 2020
Research Article|
June 22 2020
Solute strongly impacts freezing under confinement

Félix Ginot
;
Félix Ginot
a)
LSFC, UMR 3080 CNRS/Saint-Gobain CREE, Saint-Gobain Research Provence
, 84300 Cavaillon, France
Search for other works by this author on:
Théo Lenavetier;
Théo Lenavetier
LSFC, UMR 3080 CNRS/Saint-Gobain CREE, Saint-Gobain Research Provence
, 84300 Cavaillon, France
Search for other works by this author on:
Dmytro Dedovets
;
Dmytro Dedovets
b)
LSFC, UMR 3080 CNRS/Saint-Gobain CREE, Saint-Gobain Research Provence
, 84300 Cavaillon, France
Search for other works by this author on:
Sylvain Deville
LSFC, UMR 3080 CNRS/Saint-Gobain CREE, Saint-Gobain Research Provence
, 84300 Cavaillon, France
d)Author to whom correspondence should be addressed: sylvain.deville@univ-lyon1.fr
Search for other works by this author on:
a)
Present address: Fachbereich Physik, Universität Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany.
b)
Present address: LOF, UMR 5258 CNRS/Solvay, University Bordeaux, 33600 Pessac, France.
c)
Present address: Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622 Villeurbanne, France.
d)Author to whom correspondence should be addressed: sylvain.deville@univ-lyon1.fr
Appl. Phys. Lett. 116, 253701 (2020)
Article history
Received:
March 26 2020
Accepted:
May 28 2020
Connected Content
A companion article has been published:
Combined impact of confinement and solute on freezing is greater than the sum of the parts
Citation
Félix Ginot, Théo Lenavetier, Dmytro Dedovets, Sylvain Deville; Solute strongly impacts freezing under confinement. Appl. Phys. Lett. 22 June 2020; 116 (25): 253701. https://doi.org/10.1063/5.0008925
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00