Surface acoustic waves (SAWs) in the GHz frequency range can inject spin currents dynamically into adjacent non-magnetic layers via the spin pumping effect associated with ferromagnetic resonance. Here, we demonstrate an enhancement of acoustic ferromagnetic resonance and spin current generation by a pair of SAW reflector gratings, which form an acoustic analog of the distributed Bragg reflector cavity. In the experiment, we confirmed 2.04 ± 0.02 times larger SAW power absorption in a device with cavity than in the case of no acoustic cavity. We confirmed up to 2.96 ± 0.02 times larger spin current generation by measuring electric voltages generated by the inverse Edelstein effect at the interface between Cu and Bi2O3. The results suggest that acoustic cavities would be useful to enhance the conversion efficiency in SAW driven coupled magnon–phonon dynamics.

Supplementary Material

You do not currently have access to this content.