A high-sensitivity 4H–SiC temperature sensor and an alpha detector have been fabricated using additively printed metal contacts. The surface morphology and electrical conductivity of the printed electrodes were established prior to Schottky diode development. 4H–SiC Schottky diodes with direct-write printed silver contacts on the 5 μm-thick epilayer on 4H–SiC were characterized electrically in terms of the forward and reverse current–voltage and high-frequency capacitance–voltage characteristics. The turn-on voltage of the Schottky diodes, as established from the forward current–voltage characteristics measured up to a temperature of 400 °C, showed a linear temperature dependence. Schottky diodes with direct-write printed Ag electrodes were able to measure alpha particles emitted from Americium-241. The high temperature and radiation response of the Schottky diodes show their suitability for multi-modal sensor fusion on the 4H–SiC platform for harsh environment applications.

1.
P.
Ohodnicki
, Jr.
,
S.
Credle
,
M.
Buric
,
R.
Lewis
, and
S.
Seachman
, “
High temperature, harsh environment sensors for advanced power generation systems
,”
Proc. SPIE
9467
,
94671M
(
2015
).
2.
G.
Brezeanu
,
M.
Badila
,
F.
Draghici
,
R.
Pascu
,
G.
Pristavu
,
F.
Craciunoiu
, and
I.
Rusu
, “
High temperature sensors based on silicon carbide (SiC) devices
,” in
International Semiconductor Conference (CAS)
(
IEEE
,
2015
), pp.
3
10
.
3.
D. G.
Senesky
,
B.
Jamshidi
,
K. B.
Cheng
, and
A. P.
Pisano
, “
Harsh environment silicon carbide sensors for health and performance monitoring of aerospace systems: A review
,”
IEEE Sens. J.
9
,
1472
1478
(
2009
).
4.
N.
Wright
and
A.
Horsfall
, “
SiC sensors: A review
,”
J. Phys. D: Appl. Phys.
40
,
6345
(
2007
).
5.
S.
Rao
,
G.
Pangallo
,
F.
Pezzimenti
, and
F. G.
Della Corte
, “
High-performance temperature sensor based on 4H–SiC Schottky diodes
,”
IEEE Electron Device Lett.
36
,
720
722
(
2015
).
6.
P. G.
Neudeck
, “
Progress in silicon carbide semiconductor electronics technology
,”
J. Electron. Mater.
24
,
283
288
(
1995
).
7.
I.
Josan
,
C.
Boianceanu
,
G.
Brezeanu
,
V.
Obreja
,
M.
Avram
,
D.
Puscasu
, and
A.
Ioncea
, “
Extreme environment temperature sensor based on silicon carbide Schottky diode
,” in
International Semiconductor Conference
(
IEEE
,
2009
), Vol.
2
, pp.
525
528
.
8.
N. R.
Taylor
,
W.
Kuang
,
M.
Saeidijavash
,
P.
Kandlakunta
,
Y.
Zhang
, and
L. R.
Cao
, “
Direct printing of metal contacts on 4H-SiC for radiation detection
,”
AIP Adv.
9
,
095041
(
2019
).
9.
N.
Zhang
,
C.-M.
Lin
,
D. G.
Senesky
, and
A. P.
Pisano
, “
Temperature sensor based on 4H-silicon carbide pn diode operational from 20 °C to 600 °C
,”
Appl. Phys. Lett.
104
,
073504
(
2014
).
10.
S.
Rao
,
G.
Pangallo
, and
F. G.
Della Corte
, “
Highly linear temperature sensor based on 4H-silicon carbide p-i-n diodes
,”
IEEE Electron Device Lett.
36
,
1205
1208
(
2015
).
11.
K.
Hon
,
L.
Li
, and
I.
Hutchings
, “
Direct writing technology—Advances and developments
,”
CIRP Ann.
57
,
601
620
(
2008
).
12.
S.
Rao
,
G.
Pangallo
,
L. D.
Benedetto
,
A.
Rubino
,
G.
Licciardo
, and
F.
Della Corte
, “
Divanadium pentoxide/4H-silicon carbide: A Schottky contact for highly linear temperature sensors
,”
Procedia Eng.
168
,
1003
1006
(
2016
).
13.
P. N.
Luke
,
C. S.
Tindall
, and
M.
Amman
, “
Proximity charge sensing with semiconductor detectors
,”
IEEE Trans. Nucl. Sci.
56
,
808
812
(
2009
).
14.
R.
Tung
, “
Electron transport at metal-semiconductor interfaces: General theory
,”
Phys. Rev. B
45
,
13509
(
1992
).
15.
Y.
Jiao
,
A.
Hellman
,
Y.
Fang
,
S.
Gao
, and
M.
Käll
, “
Schottky barrier formation and band bending revealed by first-principles calculations
,”
Sci. Rep.
5
,
11374
(
2015
).
You do not currently have access to this content.