Photoacoustic (PA) imaging is an emerging modality, which combines the high optical absorption contrast of biological chromophores with centimeter imaging depths and sub-millimeter resolution of ultrasonic (US) waves. However, PA imaging through cortical bone remains an unmet challenge. Cortical bone is an anisotropic medium, which is not accurately modeled using existing PA image reconstruction methods. In this Letter, we address the PA source localization problem for imaging through a cortical bone-mimicking layer. Our approach accounts for both refraction and elastic anisotropy to accurately reconstruct US and PA images in the presence of a cortical bone replica. We demonstrate our technique using a PA and US experiment, where we image a 700 μm diameter target beneath a cortical bone-mimicking plate. Pulse-echo US experiment is used to estimate the wavespeed in each layer and create an anatomical image of the bone replica, and the PA source is reconstructed using the wavespeed model defined with US. We compute the thickness of the plate with less than 1% error, whereas isotropic assumptions overestimate the thickness by 20% or more. Incorporating both refraction and anisotropy accurately localizes the target with PA and US at the true depth, whereas isotropic assumptions blur the lateral dimension and mislocate the target depth by 1.5–4 mm.

1.
P.
Beard
, “
Biomedical photoacoustic imaging
,”
Interface Focus
1
,
602
631
(
2011
).
2.
M.
Xu
and
L. V.
Wang
, “
Photoacoustic imaging in biomedicine
,”
Rev. Sci. Instrum.
77
,
041101
(
2006
).
3.
M.
Xu
and
L. V.
Wang
, “
Universal back-projection algorithm for photoacoustic computed tomography
,”
Phys. Rev. E
71
,
016706
(
2005
).
4.
P.
Burgholzer
,
G. J.
Matt
,
M.
Haltmeier
, and
G.
Paltauf
, “
Exact and approximative imaging methods for photoacoustic tomography using an arbitrary detection surface
,”
Phys. Rev. E
75
,
046706
(
2007
).
5.
B. E.
Treeby
and
B. T.
Cox
, “
k-wave: Matlab toolbox for the simulation and reconstruction of photoacoustic wave fields
,”
J. Biomed. Opt.
15
,
021314
(
2010
).
6.
X.
Cai
,
L.
Peralta
,
P.-J.
Gouttenoire
,
C.
Olivier
,
F.
Peyrin
,
P.
Laugier
, and
Q.
Grimal
, “
Quantification of stiffness measurement errors in resonant ultrasound spectroscopy of human cortical bone
,”
J. Acoust. Soc. Am.
142
,
2755
2765
(
2017
).
7.
S.
Bernard
,
J.
Schneider
,
P.
Varga
,
P.
Laugier
,
K.
Raum
, and
Q.
Grimal
, “
Elasticity–density and viscoelasticity–density relationships at the tibia mid-diaphysis assessed from resonant ultrasound spectroscopy measurements
,”
Biomech. Model. Mechanobiol.
15
,
97
109
(
2016
).
8.
M.
Granke
,
Q.
Grimal
,
A.
Saïed
,
P.
Nauleau
,
F.
Peyrin
, and
P.
Laugier
, “
Change in porosity is the major determinant of the variation of cortical bone elasticity at the millimeter scale in aged women
,”
Bone
49
,
1020
1026
(
2011
).
9.
Y.
Petrov
 et al. “
Optoacoustic mapping of cerebral blood oxygenation in humans
,” in
Photons Plus Ultrasound: Imaging and Sensing 2017
(
International Society for Optics and Photonics
,
2017
), Vol. 10064.
10.
C.
Huang
,
L.
Nie
,
R. W.
Schoonover
,
Z.
Guo
,
C. O.
Schirra
,
M. A.
Anastasio
, and
L. V.
Wang
, “
Aberration correction for transcranial photoacoustic tomography of primates employing adjunct image data
,”
J. Biomed. Opt.
17
,
066016
(
2012
).
11.
K.
Mitsuhashi
,
J.
Poudel
,
T. P.
Matthews
,
A.
Garcia-Uribe
,
L. V.
Wang
, and
M. A.
Anastasio
, “
A forward-adjoint operator pair based on the elastic wave equation for use in transcranial photoacoustic computed tomography
,”
SIAM J. Imaging Sci.
10
,
2022
2048
(
2017
).
12.
J.-F.
Aubry
,
M.
Tanter
,
M.
Pernot
,
J.-L.
Thomas
, and
M.
Fink
, “
Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans
,”
J. Acoust. Soc. Am.
113
,
84
93
(
2003
).
13.
F.
Marquet
,
M.
Pernot
,
J.-F.
Aubry
,
G.
Montaldo
,
L.
Marsac
,
M.
Tanter
, and
M.
Fink
, “
Non-invasive transcranial ultrasound therapy based on a 3D CT scan: Protocol validation and in vitro results
,”
Phys. Med. Biol.
54
,
2597
2614
(
2009
).
14.
G.
Renaud
,
P.
Kruizinga
,
D.
Cassereau
, and
P.
Laugier
, “
In vivo ultrasound imaging of the bone cortex
,”
Phys. Med. Biol.
63
,
125010
(
2018
).
15.
M. K. A.
Singh
,
W.
Steenbergen
, and
S.
Manohar
, “
Handheld probe-based dual mode ultrasound/photoacoustics for biomedical imaging
,”
Frontiers in Biophotonics for Translational Medicine
(
Springer
,
2016
), pp.
209
247
.
16.
J. L.
Johnson
,
J.
Shragge
, and
K.
van Wijk
, “
Nonconfocal all-optical laser-ultrasound and photoacoustic imaging system for angle-dependent deep tissue imaging
,”
J. Biomed. Opt.
22
,
041014
(
2017
).
17.
G.
Renaud
,
J.
Johnson
, and
D.
Cassereau
, “
Real-time Kirchhoff migration for ultrasound imaging of the bone cortex
,” in
SEG Technical Program Expanded Abstracts
(
2018
), pp.
4797
4801
.
18.
S. L.
Croker
,
W.
Reed
, and
D.
Donlon
, “
Comparative cortical bone thickness between the long bones of humans and five common non-human mammal taxa
,”
Forensic Sci. Int.
260
,
104-e1
(
2016
).
19.
S.
Bernard
,
Q.
Grimal
, and
P.
Laugier
, “
Resonant ultrasound spectroscopy for viscoelastic characterization of anisotropic attenuative solid materials
,”
J. Acoust. Soc. Am.
135
,
2601
2613
(
2014
).
20.
P.
Laugier
and
G.
Haïat
, “
Introduction to the physics of ultrasound
,”
Bone Quantitative Ultrasound
(
Springer
,
2011
), pp.
29
45
.
21.
P.
Nicholson
and
M.
Bouxsein
, “
Effect of temperature on ultrasonic properties of the calcaneus in situ
,”
Osteoporosis Int.
13
,
888
892
(
2002
).
22.
W. M.
Telford
,
W.
Telford
,
L.
Geldart
,
R. E.
Sheriff
, and
R.
Sheriff
,
Applied Geophysics
(
Cambridge University Press
,
1990
).
23.
J. L.
Johnson
,
K.
van Wijk
, and
M.
Sabick
, “
Characterizing phantom arteries with multi-channel laser ultrasonics and photo-acoustics
,”
Ultrasound Med. Biol.
40
,
513
520
(
2014
).
24.
J.
Etgen
,
S. H.
Gray
, and
Y.
Zhang
, “
An overview of depth imaging in exploration geophysics
,”
Geophysics
74
,
WCA5
WCA17
(
2009
).
25.
E. W.
Dijkstra
, “
A note on two problems in connexion with graphs
,”
Numer. Math.
1
,
269
271
(
1959
).
26.
D.
Hong
, “
Medical image segmentation based on accelerated Dijkstra algorithm
,”
Advances in Intelligent Systems
(
Springer
,
2012
), pp.
341
348
.
27.
L.
Thomsen
, “
Weak elastic anisotropy
,”
Geophysics
51
,
1954
1966
(
1986
).
28.
B. E.
Treeby
,
J.
Jaros
, and
B. T.
Cox
, “
Advanced photoacoustic image reconstruction using the k-wave toolbox
,”
Photons Plus Ultrasound: Imaging and Sensing 2016
(
International Society for Optics and Photonics
,
2016
), Vol.
9708
, p.
97082P
.
29.
B. E.
Treeby
,
T. K.
Varslot
,
E. Z.
Zhang
,
J. G.
Laufer
, and
P. C.
Beard
, “
Automatic sound speed selection in photoacoustic image reconstruction using an autofocus approach
,”
J. Biomed. Opt.
16
,
090501
(
2011
).
30.
J. L.
Sandell
and
T. C.
Zhu
, “
A review of in-vivo optical properties of human tissues and its impact on PDT
,”
J. Biophotonics
4
,
773
787
(
2011
).
31.
Y.
Xu
and
L. V.
Wang
, “
Time reversal and its application to tomography with diffracting sources
,”
Phys. Rev. Lett.
92
,
033902
(
2004
).
32.
Y.
Hristova
,
P.
Kuchment
, and
L.
Nguyen
, “
Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media
,”
Inverse Probl.
24
,
055006
(
2008
).
33.
B. E.
Treeby
,
E. Z.
Zhang
, and
B. T.
Cox
, “
Photoacoustic tomography in absorbing acoustic media using time reversal
,”
Inverse Probl.
26
,
115003
(
2010
).
34.
G.
Paltauf
,
R.
Nuster
,
M.
Haltmeier
, and
P.
Burgholzer
, “
Photoacoustic tomography using a Mach–Zehnder interferometer as an acoustic line detector
,”
Appl. Opt.
46
,
3352
3358
(
2007
).
35.
H.
Grün
,
G.
Paltauf
,
M.
Haltmeier
, and
P.
Burgholzer
, “
Photoacoustic tomography using a fiber based Fabry–Perot interferometer as an integrating line detector and image reconstruction by model-based time reversal method
,” in
European Conference on Biomedical Optics
(
Optical Society of America
,
2007
), p.
6631_6
.
36.
J.
van der Neut
,
J. L.
Johnson
,
K.
van Wijk
,
S.
Singh
,
E.
Slob
, and
K.
Wapenaar
, “
A Marchenko equation for acoustic inverse source problems
,”
J. Acoust. Soc. Am.
141
,
4332
4346
(
2017
).
37.
M. K. A.
Singh
,
M.
Jaeger
,
M.
Frenz
, and
W.
Steenbergen
, “
In vivo demonstration of reflection artifact reduction in photoacoustic imaging using synthetic aperture photoacoustic-guided focused ultrasound (PAFUSion)
,”
Biomed. Opt. Express
7
,
2955
2972
(
2016
).
You do not currently have access to this content.