We report the results of experiments investigating the implosion of a shock generated by the electrical explosion of a cylindrical aluminum wire array immersed in a >80% hydrogen peroxide/water solution. This solution was chosen as an additional energy source to the supplied electrical energy to generate the imploding flow with higher velocity. The experiments were conducted using a generator with the stored energy of ∼4.8 kJ, delivering to the array a ≤280 kA current rising during ∼1 μs. The backlighted images of the imploding shocks were recorded using a streak camera. Using different diameter wires, the explosion of arrays, characterized by critically damped and under-damped discharges, was studied. The experiments revealed that an array explosion in a 92% H2O2/H2O solution results in the second strong shock generated after the peak of the deposited electrical power, a solid indication of H2O2 detonation. This second shock converges ∼40% faster than the first strong shock generated by the wire explosion. One-dimensional hydrodynamic simulations of the shock convergence in H2O2/H2O solutions support this proposition.

1.
S. N.
Bland
,
Y. E.
Krasik
,
D.
Yanuka
,
R.
Gardner
,
J.
MacDonald
,
A.
Virozub
,
S.
Efimov
,
S.
Gleizer
, and
N.
Chaturvedi
,
Phys. Plasmas
24
,
082702
(
2017
).
2.
O.
Antonov
,
S.
Efimov
,
D.
Yanuka
,
M.
Kozlov
,
V. T.
Gurovich
, and
Y. E.
Krasik
,
Appl. Phys. Lett.
102
,
124104
(
2013
).
3.
Y. E.
Krasik
,
S.
Efimov
,
D.
Sheftman
,
A.
Fedotov-Gefen
,
O.
Antonov
,
D.
Shafer
,
D.
Yanuka
,
M.
Nitishinskiy
,
M.
Kozlov
,
L.
Gilburd
,
G.
Toker
,
S.
Gleizer
,
E.
Zvulun
,
V. Tz.
Gurovich
,
D.
Varentsov
, and
M.
Rodionova
,
IEEE Trans. Plasma Sci.
44
,
412
(
2016
); and references therein.
4.
G.
Bazalitski
,
V. T.
Gurovich
,
A.
Fedotov-Gefen
,
S.
Efimov
, and
Y. E.
Krasik
,
Shock Waves
21
,
321
(
2011
).
5.
A. S.
Kompaneets
,
Shock Waves
(
Physmathgiz
,
Moscow
,
1963
) (in Russian).
6.
R.
Engelke
,
S. A.
Sheffield
, and
L. L.
Davis
,
J. Phys. Chem. A
104
,
6894
6898
(
2000
).
7.
M. R.
Armstrong
,
J. M.
Zaug
,
N.
Goldman
,
I. F. W.
Kuo
,
J. C.
Crowhurst
,
W. M.
Howard
,
J. A.
Carter
,
M.
Kashgarian
,
J. M.
Chesser
,
T. W.
Barbee
, and
S.
Bastea
,
J. Phys. Chem. A
117
,
13051
(
2013
).
8.
L. L.
Gibson
,
B.
Bartram
,
D. M.
Dattelbaum
,
S. A.
Sheffield
, and
D. B.
Stahl
,
AIP Conf. Proc.
1195
,
133
(
2009
).
9.
A.
Rososhek
,
S.
Efimov
,
A.
Virozub
,
D.
Maler
, and
Y. E.
Krasik
,
Appl. Phys. Lett.
115
,
074101
(
2019
).
10.
S. P.
Lyon
and
J. D.
Johnson
, “
SESAME: The Los Alamos National Laboratory equation-of-state database
,”
Report No. LA-UR-92–3407
(Los Alamos National Laboratory,
1992
).
11.
Y. B.
Zeldovich
and
Y. P.
Raizer
,
Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena
, 2nd ed. (
Academic Press
,
New York/London
,
1966
).
12.
S.
Efimov
,
A.
Fedotov
,
S.
Gleizer
,
V. T.
Gurovich
,
G.
Bazalitski
, and
Y. E.
Krasik
,
Phys. Plasma
15
,
112703
(
2008
).
13.
A.
Rososhek
,
S.
Efimov
,
S. V.
Tewari
,
D.
Yanuka
, and
Y. E.
Krasik
,
Phys. Plasmas
25
,
102709
(
2018
).
14.
C.
Comte
and
J.
von Stebut
,
Surf. Coat. Technol.
154
,
42
48
(
2002
).
15.
C.
Ishiyama
and
Y.
Higo
,
J. Polym. Sci., Part B
40
,
460
(
2002
).
16.
L. D.
Landau
and
E. M.
Lifshitz
,
Theory of Elasticity
(
Pergamon Press
,
1986
).
17.
A.
Rososhek
,
S.
Efimov
,
A.
Goldman
,
S. V.
Tewari
, and
Y. E.
Krasik
,
Phys. Plasmas
26
,
053510
(
2019
).
You do not currently have access to this content.