Diamagnetic levitation is a promising technique for realizing resonant sensors and energy harvesters since it offers thermal and mechanical isolation from the environment at zero power. To advance the application of diamagnetically levitating resonators, it is important to characterize their dynamics in the presence of both magnetic and gravitational fields. Here we experimentally actuate and measure rigid body modes of a diamagnetically levitating graphite plate. We numerically calculate the magnetic field and determine the influence of magnetic force on the resonance frequencies of the levitating plate. By analyzing damping mechanisms, we conclude that eddy current damping dominates dissipation in mm-sized plates. We use finite element simulations to model eddy current damping and find close agreement with experimental results. We also study the size-dependent Q-factors (Qs) of diamagnetically levitating plates and show that Qs above 100 million are theoretically attainable by reducing the size of the diamagnetic resonator down to microscale, making these systems of interest for next generation low-noise resonant sensors and oscillators.

1.
E.
Brandt
, “
Levitation in physics
,”
Science
243
,
349
355
(
1989
).
2.
G.
Kustler
, “
Diamagnetic levitation-historical milestones
,”
Revue Roumaine Des Sci. Tech. Serie Electrotechnique Et Energetique
52
,
265
(
2007
).
3.
M.
Simon
and
A.
Geim
, “
Diamagnetic levitation: Flying frogs and floating magnets
,”
J. Appl. Phys.
87
,
6200
6204
(
2000
).
4.
I.
Lyuksyutov
,
D.
Naugle
, and
K.
Rathnayaka
, “
On-chip manipulation of levitated femtodroplets
,”
Appl. Phys. Lett.
85
,
1817
1819
(
2004
).
5.
H.
Chetouani
,
C.
Jeandey
,
V.
Haguet
,
H.
Rostaing
,
C.
Dieppedale
, and
G.
Reyne
, “
Diamagnetic levitation with permanent magnets for contactless guiding and trapping of microdroplets and particles in air and liquids
,”
IEEE Trans. Magn.
42
,
3557
3559
(
2006
).
6.
H.
Chetouani
,
V.
Haguet
,
C.
Jeandey
,
C.
Pigot
,
A.
Walther
,
N.
Dempsey
,
F.
Chatelain
,
B.
Delinchant
, and
G.
Reyne
, “
Diamagnetic levitation of beads and cells above permanent magnets
,” in
TRANSDUCERS 2007-2007 International Solid-State Sensors, Actuators and Microsystems Conference
(
IEEE
,
2007
), pp.
715
718
.
7.
D.
Garmire
,
H.
Choo
,
R.
Kant
,
S.
Govindjee
,
C.
Sequin
,
R.
Muller
, and
J.
Demmel
, “
Diamagnetically levitated mems accelerometers
,” in
TRANSDUCERS 2007-2007 International Solid-State Sensors, Actuators and Microsystems Conference
(
IEEE
,
2007
), pp.
1203
1206
.
8.
C.
Pigot
,
B.
Delinchant
,
G.
Poulin
, and
G.
Reyne
, “
Optimization of a 3D micro-accelerometer based on diamagnetic levitation
,”
Int. J. Appl. Electromagn. Mech.
30
,
179
188
(
2009
).
9.
L.
Liu
and
F.
Yuan
, “
Nonlinear vibration energy harvester using diamagnetic levitation
,”
Appl. Phys. Lett.
98
,
203507
(
2011
).
10.
L.
Liu
and
F.
Yuan
, “
Diamagnetic levitation for nonlinear vibration energy harvesting: Theoretical modeling and analysis
,”
J. Sound Vib.
332
,
455
464
(
2013
).
11.
S.
Palagummi
and
F.
Yuan
, “
A bi-stable horizontal diamagnetic levitation based low frequency vibration energy harvester
,”
Sens. Actuators, A
279
,
743
752
(
2018
).
12.
S.
Clara
,
H.
Antlinger
,
A.
Abdallah
,
E.
Reichel
,
W.
Hilber
, and
B.
Jakoby
, “
An advanced viscosity and density sensor based on diamagnetically stabilized levitation
,”
Sens. Actuators, A
248
,
46
53
(
2016
).
13.
M.
Boukallel
,
J.
Abadie
, and
E.
Piat
, “
Levitated micro-nano force sensor using diamagnetic materials
,” in
IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422)
(
IEEE
,
2003
), Vol.
3
, pp.
3219
3224
.
14.
S.
Schmid
,
L. G.
Villanueva
, and
M. L.
Roukes
,
Fundamentals of Nanomechanical Resonators
(
Springer
,
2016
), Vol.
49
.
15.
R. A.
Norte
,
J. P.
Moura
, and
S.
Gröblacher
, “
Mechanical resonators for quantum optomechanics experiments at room temperature
,”
Phys. Rev. Lett.
116
,
147202
(
2016
).
16.
J.
Van Beek
,
P.
Steeneken
, and
B.
Giesbers
, “
A 10 MHZ piezoresistive MEMS resonator with high q
,” in
IEEE International Frequency Control Symposium and Exposition
(
IEEE
,
2006
), pp.
475
480
.
17.
J.
Gieseler
,
L.
Novotny
, and
R.
Quidant
, “
Thermal nonlinearities in a nanomechanical oscillator
,”
Nat. Phys.
9
,
806
810
(
2013
).
18.
S.
Palagummi
and
F.
Yuan
, “
An optimal design of a mono-stable vertical diamagnetic levitation based electromagnetic vibration energy harvester
,”
J. Sound Vib.
342
,
330
345
(
2015
).
19.
J.
Pappis
and
S.
Blum
, “
Properties of pyrolytic graphite
,”
J. Am. Ceram. Soc.
44
,
592
597
(
1961
).
20.
E. P.
Furlani
,
Permanent Magnet and Electromechanical Devices: Materials, Analysis, and Applications
(
Academic Press
,
2001
).
21.
G.
Akoun
and
J.-P.
Yonnet
, “
3D analytical calculation of the forces exerted between two cuboidal magnets
,”
IEEE Trans. Magn.
20
,
1962
1964
(
1984
).
22.
B.
Ebrahimi
,
M. B.
Khamesee
, and
M. F.
Golnaraghi
, “
Design and modeling of a magnetic shock absorber based on eddy current damping effect
,”
J. Sound Vib.
315
,
875
889
(
2008
).
23.
J.-F.
Hsu
,
P.
Ji
,
C. W.
Lewandowski
, and
B.
D'Urso
, “
Cooling the motion of diamond nanocrystals in a magneto-gravitational trap in high vacuum
,”
Sci. Rep.
6
,
30125
(
2016
).
24.
M.
O'Brien
,
S.
Dunn
,
J.
Downes
, and
J.
Twamley
, “
Magneto-mechanical trapping of micro-diamonds at low pressures
,”
Appl. Phys. Lett.
114
,
053103
(
2019
).
25.
C. W.
Lewandowski
,
T. D.
Knowles
,
Z. B.
Etienne
, and
B.
D'Urso
, “
High sensitivity accelerometry with a feedback-cooled magnetically levitated microsphere
,” preprint arXiv:2002.07585 (
2020
).

Supplementary Material

You do not currently have access to this content.