In this work, an enhancement-mode (E-mode) β-Ga2O3 metal-oxide-semiconductor field-effect transistor (MOSFET) has been achieved by incorporating a laminated-ferroelectric charge storage gate (L-FeG) structure [Al2O3/HfO2/Al2O3/Hf0.5Zr0.5O2 (HZO) of 10/5/2/16 nm]. The band diagram between L-FeG dielectrics (Al2O3, HfO2, and HZO) and β-Ga2O3 was determined by x-ray photoelectron spectroscopy. After applying a gate pulse with an intensity of +18 V and width of 1 ms, the saturation current of the E-mode device was measured to be 23.2 mA/mm, which shows a negligible current reduction compared to that of 22.1 mA/mm in a depletion- (D-) mode device. In addition, the threshold voltage (VTH) is only shifted by 2.76% and 2.18%, respectively, after applying the gate stress and gate-drain stress of 15 V for 104 s. Meanwhile, a high breakdown voltage of 2142 V and specific on-resistance (RON,sp) of 23.84 mΩ·cm2 were also achieved, which correspond to a state-of-art high power figure of merit of 192.5 MW/cm2, showing the great potential of combing the ferroelectric gate stack and lateral Ga2O3 MOSFET as next generation power devices.

1.
M.
Higashiwaki
,
K.
Sasaki
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
,
Appl. Phys. Lett.
100
,
013504
(
2012
).
2.
M. H.
Wong
,
K.
Sasaki
,
A.
Kuramata
,
S.
Tamakoshi
, and
M.
Higashiwaki
,
IEEE Electron Device Lett.
37
,
212
(
2016
).
3.
M.
Higashiwaki
,
K.
Sasaki
,
T.
Kamimura
,
M. H.
Wong
,
D.
Krishnamurthy
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
,
Appl. Phys. Lett.
103
,
123511
(
2013
).
4.
K.
Sasaki
,
M.
Higashiwaki
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
,
IEEE Electron Device Lett.
34
,
493
(
2013
).
5.
K.
Sasaki
,
A.
Kuramata
,
T.
Masui
,
E. G.
Villora
,
K.
Shimamura
, and
S.
Yamakoshi
,
Appl. Phys. Express
5
,
035502
(
2012
).
6.
W. S.
Hwang
,
A.
Verma
,
H.
Peelaers
,
V.
Protasenko
,
S.
Rouvimov
,
H.
Xing
,
A.
Seabaugh
,
W.
Haensch
,
C.
Van de Walle
,
Z.
Galazka
,
M.
Albrecht
,
R.
Fornari
, and
D.
Jena
,
Appl. Phys. Lett.
104
,
203111
(
2014
).
7.
K.
Sasaki
,
M.
Higashiwaki
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
,
Appl. Phys. Express
6
,
086502
(
2013
).
8.
Z.
Hu
,
H.
Zhou
,
Q.
Feng
,
J.
Zhang
,
C.
Zhang
,
K.
Dang
,
Y.
Cai
,
Z.
Feng
,
Y.
Gao
,
X.
Kang
, and
Y.
Hao
,
IEEE Electron Device Lett.
39
,
1564
(
2018
).
9.
A. J.
Green
,
K. D.
Chabak
,
E. R.
Heller
,
R. C.
Fitch
,
M.
Baldini
,
A.
Fiedler
,
K.
Irmscher
,
G.
Wagner
,
Z.
Galazka
,
S. E.
Tetlak
,
A.
Crespo
,
K.
Leedy
, and
G. H.
Jessen
,
IEEE Electron Device Lett.
37
,
902
(
2016
).
10.
K. D.
Chabak
,
N.
Moser
,
A. J.
Green
,
D. E.
Walker
,
S. E.
Tetlak
,
E.
Heller
,
A.
Crespo
,
R.
Fitch
,
J. P.
McCandless
,
K.
Leedy
,
M.
Baldini
,
G.
Wagner
,
Z.
Galazka
,
X.
Li
, and
G.
Jessen
,
Appl. Phys. Lett.
109
,
213501
(
2016
).
11.
K. D.
Chabak
,
J. P.
McCandless
,
N. A.
Moser
,
A. J.
Green
,
K.
Mahalingam
,
A.
Crespo
,
N.
Hendricks
,
B. M.
Howe
,
S. E.
Tetlak
,
K.
Leedy
,
R. C.
Fitch
,
D.
Wakimoto
,
K.
Sasaki
,
A.
Kuramata
, and
G. H.
Jessen
,
IEEE Electron Device Lett.
39
,
67
(
2018
).
12.
K.
Zeng
,
A.
Vaidya
, and
U.
Singisetti
,
IEEE Electron Device Lett.
39
,
1385
(
2018
).
13.
Y.
Lv
,
X.
Zhou
,
S.
Long
,
X.
Song
,
Y.
Wang
,
S.
Liang
,
Z.
He
,
T.
Han
,
X.
Tan
,
Z.
Feng
,
H.
Dong
,
X.
Zhou
,
Y.
Yu
,
S.
Cai
, and
M.
Liu
,
IEEE Electron Device Lett.
40
,
83
(
2019
).
14.
H.
Zhou
,
K.
Maize
,
G.
Qiu
,
A.
Shakouri
, and
P. D.
Ye
,
Appl. Phys. Lett.
111
,
092102
(
2017
).
15.
H.
Zhou
,
M.
Si
,
S.
Alghamdi
,
G.
Qiu
,
L.
Yang
, and
P. D.
Ye
,
IEEE Electron Device Lett.
38
,
103
(
2017
).
16.
J. K.
Mun
,
K.
Cho
,
W.
Chang
,
H.-W.
Jung
, and
J.
Do
,
ECS J. Solid State Sci. Technol.
8
,
Q3079
(
2019
).
17.
Z.
Feng
,
Y.
Cai
,
G.
Yan
,
Z.
Hu
,
K.
Dang
,
Y.
Zhang
,
Z.
Lu
,
H.
Cheng
,
X.
Lian
,
Y.
Xu
,
C.
Zhang
,
Q.
Feng
,
H.
Zhou
,
J.
Zhang
, and
Y.
Hao
,
Phys. Status Solidi A
216
,
1900421
(
2019
).
18.
K.
Tetzner
,
E. B.
Treidel
,
O.
Hilt
,
A.
Popp
,
S. B.
Anooz
,
G.
Wagner
,
A.
Thies
,
K.
Ickert
,
H.
Gargouri
, and
J.
Würfl
,
IEEE Electron Device Lett.
40
,
1503
(
2019
).
19.
M. H.
Wong
,
Y.
Nakata
,
A.
Kuramata
,
S.
Yamakoshi
, and
M.
Higashiwaki
,
Appl. Phys. Express
10
,
041101
(
2017
).
20.
Z.
Feng
,
Q.
Feng
,
J.
Zhang
,
C.
Zhang
,
H.
Zhou
,
X.
Li
,
L.
Huang
,
L.
Xu
,
Y.
Hu
,
S.
Zhao
, and
Y.
Hao
,
J. Alloys Compd.
745
,
292
(
2018
).
21.
Z.
Feng
,
Q.
Feng
,
J.
Zhang
,
X.
Li
,
F.
Li
,
L.
Huang
,
H.-Y.
Chen
,
H.-L.
Lu
, and
Y.
Hao
,
Appl. Surf. Sci.
434
,
440
(
2018
).
22.
K.
Zeng
,
J. S.
Wallace
,
C.
Heimburger
,
K.
Sasaki
,
A.
Kuramata
,
T.
Masui
,
J. A.
Gardella
, Jr.
, and
U.
Singisetti
,
IEEE Electron Device Lett.
38
,
513
(
2017
).
23.
M.
Si
,
L.
Yang
,
H.
Zhou
, and
P. D.
Ye
,
ACS Omega
2
,
7136
(
2017
).
24.
T.
Kamimura
,
K.
Sasaki
,
M. H.
Wong
,
D.
Krishnamurthy
,
A.
Kuramata
,
T.
Masui
,
S.
Yamakoshi
, and
M.
Higashiwaki
,
Appl. Phys. Lett.
104
,
192104
(
2014
).
25.
Z.
Feng
,
X.
Tian
,
Z.
Li
,
Z.
Hu
,
Y.
Zhang
,
X.
Kang
,
J.
Ning
,
Y.
Zhang
,
C.
Zhang
,
Q.
Feng
,
H.
Zhou
,
J.
Zhang
, and
Y.
Hao
,
IEEE Electron Device Lett.
41
,
333
(
2020
).
26.
K.
Zeng
,
A.
Vaidya
, and
U.
Singisetti
,
Appl. Phys. Express
12
,
081003
(
2019
).
27.
Y.
Lv
,
X.
Zhou
,
S.
Long
,
S.
Liang
,
X.
Song
,
X.
Zhou
,
H.
Dong
,
Y.
Wang
,
Z.
Feng
, and
S.
Cai
,
Semicond. Sci. Technol.
34
,
11LT02
(
2019
).
28.
Y.
Lv
,
H.
Liu
,
X.
Zhou
,
Y.
Wang
,
X.
Song
,
Y.
Cai
,
Q.
Yan
,
C.
Wang
,
S.
Liang
,
J.
Zhang
,
Z.
Feng
,
H.
Zhou
,
S.
Cai
, and
Y.
Hao
,
IEEE Electron Device Lett.
41
,
537
(
2020
).
29.
W.
Li
,
K.
Nomoto
,
Z.
Hu
,
T.
Nakamura
,
D.
Jena
, and
H. G.
Xing
, in
IEEE International Electron Device Meeting
(
2019
), p.
12.4.1
.
30.
Y.
Lv
,
X.
Zhou
,
S.
Long
,
Y.
Wang
,
X.
Song
,
X.
Zhou
,
G.
Xu
,
S.
Liang
,
Z.
Feng
,
S.
Cai
,
X.
Fu
,
A.
Pu
, and
M.
Liu
,
Phys. Status Solidi RRL
14
,
1900586
(
2020
).
31.
V. D.
Wheeler
,
D. I.
Shahin
,
M. J.
Tadjer
, and
C. R.
Eddy
,
ECS J. Solid State Sci. Technol.
6
,
Q3052
(
2017
).
You do not currently have access to this content.