We report the observation at low temperature of a hump in the linear transfer characteristic of a thin film fully depleted silicon-on-insulator transistor when a positive bias is applied on the back gate under the buried oxide. This decrease in the current is correlated with the transition from one-subband to two-subband conduction. Electron mobility measurements and calculations are in good agreement with the occurrence of intersubband scattering in carrier transport in the two-dimensional inversion layer.

1.
R. R.
Green
, “
MOSFET operation at 4.2 K
,”
Rev. Sci. Instrum.
39
,
1495
1497
(
1968
).
2.
C. G.
Rogers
, “
MOST's at cryogenic temperatures
,”
Solid State Electron.
11
,
1079
1091
(
1968
).
3.
F.
Balestra
and
G.
Ghibaudo
,
Device and Circuit Cryogenic Operation for Low Temperature Electronics
(
Springer
,
2001
).
4.
A.
Beckers
,
F.
Jazaeri
,
A.
Ruffino
,
C.
Bruschini
,
A.
Baschirotto
, and
C.
Enz
, “
Cryogenic characterization of 28 nm bulk CMOS technology for quantum computing
,” in
European Solid-State Device Research Conference
(
2017
), pp.
62
65
.
5.
P.
Galy
,
J.
Camirand Lemyre
,
P.
Lemieux
,
F.
Arnaud
,
D.
Drouin
, and
M.
Pioro-Ladriere
, “
Cryogenic temperature characterization of a 28-nm FD-SOI dedicated structure for advanced CMOS and quantum technologies co-integration
,”
IEEE J. Electron Devices Soc.
6
,
594
600
(
2018
).
6.
H.
Bohuslavskyi
,
S.
Barraud
,
V.
Barral
,
M.
Casse
,
L.
Le Guevel
,
L.
Hutin
,
B.
Bertrand
,
A.
Crippa
,
X.
Jehl
,
G.
Pillonnet
,
A. G.
Jansen
,
F.
Arnaud
,
P.
Galy
,
R.
Maurand
,
S.
De Franceschi
,
M.
Sanquer
, and
M.
Vinet
, “
Cryogenic characterization of 28-nm FD-SOI ring oscillators with energy efficiency optimization
,”
IEEE Trans. Electron Devices
65
,
3682
3688
(
2018
).
7.
S. R.
Ekanayake
,
T.
Lehmann
,
A. S.
Dzurak
,
R. G.
Clark
, and
A.
Brawley
, “
Characterization of SOS-CMOS FETs at low temperatures for the design of integrated circuits for quantum bit control and readout
,”
IEEE Trans. Electron Devices
57
,
539
547
(
2010
).
8.
P.
Clapera
,
S.
Ray
,
X.
Jehl
,
M.
Sanquer
,
A.
Valentian
, and
S.
Barraud
, “
Design and cryogenic operation of a hybrid quantum-CMOS circuit
,”
Phys. Rev. Appl.
4
,
044009
(
2015
).
9.
D. J.
Reilly
, “
Engineering the quantum-classical interface of solid-state qubits
,”
npj Quantum Inf.
1
,
15011
(
2015
).
10.
E.
Charbon
,
F.
Sebastiano
,
A.
Vladimirescu
,
H.
Homulle
,
S.
Visser
,
L.
Song
, and
R. M.
Incandela
, “
Cryo-CMOS for quantum computing
,” in
IEDM Technical Digest
(
2016
), pp.
343
346
.
11.
H.
Bohuslavskyi
,
S.
Barraud
,
M.
Cassé
,
V.
Barrai
,
B.
Bertrand
,
L.
Hutin
,
F.
Arnaud
,
P.
Galy
,
M.
Sanquer
,
S.
De Franceschi
, and
M.
Vinet
, “
28 nm Fully-depleted SOI technology: Cryogenic control electronics for quantum computing
,” in
Silicon Nanoelectronics Workshop
(
2017
), pp.
143
144
.
12.
N.
Planes
,
O.
Weber
,
V.
Barral
,
S.
Haendler
,
D.
Noblet
,
D.
Croain
,
M.
Bocat
,
P. O.
Sassoulas
,
X.
Federspiel
,
A.
Cros
,
A.
Bajolet
,
E.
Richard
,
B.
Dumont
,
P.
Perreau
,
D.
Petit
,
D.
Golanski
,
C.
Fenouillet-Béranger
,
N.
Guillot
,
M.
Rafik
,
V.
Huard
,
S.
Puget
,
X.
Montagner
,
M. A.
Jaud
,
O.
Rozeau
,
O.
Saxod
,
F.
Wacquant
,
F.
Monsieur
,
D.
Barge
,
L.
Pinzelli
,
M.
Mellier
,
F.
Boeuf
,
F.
Arnaud
, and
M.
Haond
, “
28 nm FDSOI technology platform for high-speed low-voltage digital applications
,” in
Symposium on VLSI Technology Digest of Technical Papers
(
2012
), pp.
133
134
.
13.
J. G.
Fossum
and
V. P.
Trivedi
,
Fundamentals of Ultra-Thin-Body MOSFETs and FinFETs
(
Cambridge University Press
,
2013
).
14.
G.
Ghibaudo
, “
New method for the extraction of MOSFET parameters
,”
Electron. Lett.
24
,
543
545
(
1988
).
15.
S.
Takagi
,
A.
Toriumi
,
M.
Iwase
, and
H.
Tango
, “
On the universality of inversion layer mobility in Si MOSFET's: Part I–effects of substrate impurity concentration
,”
IEEE Trans. Electron Devices
41
,
2357
2362
(
1994
).
16.
A.
Ohata
,
S.
Cristoloveanu
, and
M.
Cassé
, “
Mobility comparison between front and back channels in ultrathin silicon-on-insulator metal-oxide-semiconductor field-effect transistors by the front-gate split capacitance-voltage method
,”
Appl. Phys. Lett.
89
,
032104
(
2006
).
17.
D.
Esseni
and
A.
Abramo
, “
Modeling of electron mobility degradation by remote coulomb scattering in ultrathin oxide MOSFETs
,”
IEEE Trans. Electron Devices
50
,
1665
1674
(
2003
).
18.
H. L.
Störmer
and
A. C.
Gossard
, “
Observation of intersubband scattering in a 2-dimensional electron system
,”
Solid-State Commun.
41
,
707
709
(
1982
).
19.
R.
Fletcher
,
E.
Zaremba
, and
M.
D'Ioro
, “
Persistent photoconductivity and two-band effects in GaAs/AlxGa1−xAs heterojunctions
,”
Phys. Rev. B
41
,
10649
(
1990
).
20.
S.
Mori
and
T.
Ando
, “
Intersubband scattering effect on the mobility of a Si (100) inversion layer at low temperatures
,”
Phys. Rev. B
19
,
6433
6441
(
1979
).
21.
D.
Esseni
,
A.
Abramo
,
L.
Selmi
, and
E.
Sangiorgi
, “
Physically based modeling of low field electron mobility in ultrathin single- and double-gate SOI n-MOSFETs
,”
IEEE Trans. Electron Devices
50
,
2445
2455
(
2003
).
22.
T.
Sahu
and
J.
Patnaik
, “
Low temperature electron mobility in a coupled quantum well system
,”
Superlattices Microstruct.
30
,
119
(
2001
).
23.
D. K.
Ferry
,
S. M.
Goodnick
, and
J.
Bird
,
Transport in Nanostructures
, 2nd ed. (
Cambridge University Press
,
2009
).
24.
T.
Ando
,
A. B.
Fowler
, and
F.
Stern
, “
Electronic properties of two-dimensional systems
,”
Rev. Mod. Phys.
54
,
437
(
1982
).

Supplementary Material

You do not currently have access to this content.