We report on an anomalous mode distinct from both optical and acoustic modes in phonon dispersion curves of bulk Si1−xGex alloy with x taking the values of 0.16, 0.32, 0.45, and 0.72. The anomalous mode at approximately 13 meV was observed directly using inelastic x-ray scattering along the Γ–X ([00q]) direction. The phonon dispersion relations of the anomalous mode indicate that there was no momentum dependence, similar to those of the longitudinal and transverse optical modes (Ge–Ge, Si–Ge, and Si–Si modes). In contrast to the acoustic and optical phonon modes, the energy of the anomalous mode shows no Ge fraction dependence. The molecular dynamics simulation corroborates that the Ge–Ge pairs or Ge atom clusters, which are surrounded by Si atoms, provide the anomalous mode, which is unique to the alloy structure. It has been suggested that such a localized vibration mode with no propagation significantly affects the acoustic modes, leading to low thermal conductivity in the SiGe alloy.

1.
M. C.
Steele
and
F. D.
Rosi
,
J. Appl. Phys.
29
,
1517
(
1958
).
2.
J. P.
Dismukes
,
L.
Ekstrom
,
E. F.
Steigmeier
,
I.
Kudman
, and
D. S.
Beers
,
J. Appl. Phys.
35
,
2899
(
1964
).
3.
D.
Fan
,
H.
Sigg
,
R.
Spolenak
, and
Y.
Ekinci
,
Phys. Rev. B
96
,
115307
(
2017
).
4.
Z.
Wang
and
N.
Mingo
,
Appl. Phys. Lett.
97
,
101903
(
2010
).
5.
J. A.
Martinez
,
P. P.
Provencio
,
S. T.
Picraux
,
J. P.
Sullivan
, and
B. S.
Swartzentruber
,
J. Appl. Phys.
110
,
074317
(
2011
).
6.
R.
Yokogawa
,
S.
Hashimoto
,
K.
Takahashi
,
S.
Oba
,
M.
Tomita
,
M.
Kurosawa
,
T.
Watanabe
, and
A.
Ogura
,
ECS Trans.
86
(
7
),
87
(
2018
).
7.
M.
Wagner
,
G.
Span
,
S.
Holzer
, and
T.
Grasser
,
Semicond. Sci. Technol.
22
,
S173
(
2007
).
8.
W. J.
Brya
,
Solid State Commun.
12
,
253
(
1973
).
9.
M. I.
Alonso
and
K.
Winer
,
Phys. Rev. B
39
,
10056
(
1989
).
10.
F.
Pezzoli
,
L.
Martinelli
,
E.
Grilli
,
M.
Guzzi
,
S.
Sanguinetti
,
M.
Bollani
,
H. D.
Chrastina
,
G.
Isella
,
H.
von K änel
,
E.
Wintersberger
,
J.
Stangl
, and
G.
Bauer
,
Mater. Sci. Eng., B
124–125
,
127
(
2005
).
11.
O.
Pagès
,
J.
Souhabi
,
V. J. B.
Torres
,
A. V.
Postnikov
, and
K. C.
Rustagi
,
Phys. Rev. B.
86
,
045201
(
2012
).
12.
J. C.
Tsang
,
P. M.
Mooney
,
F.
Dacol
, and
J. O.
Chu
,
J. Appl. Phys.
75
,
8098
(
1994
).
13.
T. S.
Perova
,
J.
Wasyluk
,
K.
Lyutovich
,
E.
Kasper
,
M.
Oehme
,
K.
Rode
, and
A.
Waldron
,
J. Appl. Phys.
109
,
033502
(
2011
).
14.
D.
Rouchon
,
M.
Mermoux
,
F.
Bertin
, and
J. M.
Hartman
,
J. Cryst. Growth
392
,
66
(
2014
).
15.
R.
Yokogawa
,
K.
Takeuchi
,
T.
Murakami
,
K.
Usuda
,
I.
Yonenaga
, and
A.
Ogura
,
Jpn. J. Appl. Phys., Part 1
57
,
106601
(
2018
).
16.
A. Q. R.
Baron
,
Y.
Tanaka
,
S.
Goto
,
K.
Takeshita
,
T.
Matsushita
, and
T.
Ishikawa
,
J. Phys. Chem. Solids
61
,
461
(
2000
).
17.
I.
Yonenaga
,
A.
Matsui
,
S.
Tozawa
,
K.
Sumino
, and
T.
Fukuda
,
J. Cryst. Growth
154
,
275
(
1995
).
18.
I.
Yonenaga
,
J. Cryst. Growth
275
,
91
(
2005
).
19.
I.
Yonenaga
, in
Silicon, Germanium, and Their Alloys
, edited by
G.
Kissinger
and
S.
Pizzini
(
CRC Press
,
Boca Raton, FL
,
2015
), p.
23
.
20.
K.
Kinoshita
,
H.
Kato
,
M.
Iwai
,
T.
Tsuru
,
Y.
Muramatsu
, and
S.
Yoda
,
J. Cryst. Growth
225
,
59
(
2001
).
21.
K.
Kinoshita
,
Y.
Hanaue
,
H.
Nakamura
,
S.
Yoda
,
M.
Iwai
,
T.
Tsuru
, and
Y.
Muramatsu
,
J. Cryst. Growth
237–239
,
1859
(
2002
).
22.
K.
Kinoshita
,
Y.
Arai
,
O.
Nakatsuka
,
K.
Taguchi
,
H.
Tomioka
,
R.
Tanaka
, and
S.
Yoda
,
Jpn. J. Appl. Phys., Part 1
54
,
04DH03
(
2015
).
23.
M.
Tomita
,
M.
Ogasawara
,
T.
Terada
, and
T.
Watanabe
,
Jpn. J. Appl. Phys., Part 1
57
,
04FB04
(
2018
).
24.
F. H.
Stillinger
and
T. A.
Weber
,
Phys. Rev. B
31
,
5262
(
1985
).
25.
S.
Hashimoto
,
R.
Yokogawa
,
S.
Oba
,
S.
Asada
,
T.
Xu
,
M.
Tomita
,
A.
Ogura
,
T.
Matsukawa
,
M.
Masahara
, and
T.
Watanabe
,
J. Appl. Phys.
122
,
144305
(
2017
).
26.
J. A.
Thomas
,
J. E.
Turney
,
R. M.
Iutzi
,
C. H.
Amon
, and
A. J. H.
McGaughey
,
Phys. Rev. B
81
,
081411
(
2010
).
27.
H.
Richter
,
Z. P.
Wang
, and
L.
Ley
,
Solid State Commun.
39
,
625
(
1981
).
28.
P.
Parayanthal
and
F. H.
Pollak
,
Phys. Rev. Lett.
52
,
1822
(
1984
).
29.
J.
Kulda
,
D.
Strauch
,
P.
Pavone
, and
Y.
Ishii
,
Phys. Rev. B
50
,
13347
(
1994
).
30.
G.
Nilsson
and
G.
Nelin
,
Phys. Rev. B
3
,
364
(
1971
).
31.
H.
Uchiyama
,
Y.
Oshima
,
R.
Patterson
,
S.
Iwamoto
,
J.
Shiomi
, and
K.
Shimamura
,
Phys. Rev. Lett.
120
,
235901
(
2018
).
32.
S. Y. Y.
Chung
,
M.
Tomita
,
R.
Yokogawa
,
A.
Ogura
, and
T.
Watanabe
, in
Extended Abstracts on the 67th Japan Society of Applied Physics (JSAP) Spring Meeting
(
2020
), p.
11-044
.
33.
S. Y. Y.
Chung
,
M.
Tomita
,
R.
Yokogawa
,
A.
Ogura
, and
T.
Watanabe
, “
Observation of an unidentified phonon peak in SiGe alloys and superlattices using molecular dynamics
,” in
Extended Abstracts on Pacific Rim Meeting on Electrochemical and Solid-State Science
(
2020
) (unpublished).
34.
S. Y. Y.
Chung
,
M.
Tomita
,
R.
Yokogawa
,
A.
Ogura
, and
T.
Watanabe
, “
Observation of an unidentified phonon peak in SiGe alloys and superlattices using molecular dynamics
,”
ECS Trans.
(
2020
) (unpublished).
35.
A.
Béraud
,
J.
Kulda
,
I.
Yonenaga
,
M.
Foret
,
B.
Salce
, and
E.
Courtens
,
Physica
350
,
254
(
2004
).
36.
T.
Zushi
,
K.
Ohmori
,
K.
Yamada
, and
T.
Watanabe
,
Phys. Rev. B
91
,
115308
(
2015
).

Supplementary Material

You do not currently have access to this content.