This study presents a test method and its theoretical framework to determine the acoustic nonlinearity parameters (α,β,δ) of material using thermal modulation of ultrasonic waves. Temperature change-induced thermal strain excites the nonlinear response of the material and modulates the ultrasonic wave propagating in it. Experimental results showed a strong correlation between the relative wave velocity change and the temperature change. With a quadratic polynomial model, the acoustic nonlinearity parameters were obtained from the polynomial coefficients by curve fitting the experimental data. Their effects on thermal-induced velocity change were discussed. The parameters α,β,andδ govern the hysteretic gap, average slope, and curvature of the correlation curve, respectively. The proposed theory was validated on aluminum, steel, intact and damaged concrete samples. The obtained nonlinear parameters show reasonable agreement with values reported in the literature. Compared to other nonlinear acoustic methods using vibration or acoustic excitation, the thermal modulation method generates more uniform, slow changing, and larger strain field in the test sample. Employing the thermal effect as the driving force for nonlinearity instead of an undesired influencing factor, this method can measure the absolute values of α,β,andδ with good accuracy using a simple ultrasonic test setup.

1.
K.
McCall
and
R.
Guyer
,
J. Geophys. Res.
99
,
23887
, (
1994
).
2.
K.
Mccall
and
R.
Guyer
,
Nonlinear Processes Geophys.
3
,
89
(
1996
).
3.
T.
Meurer
,
J.
Qu
, and
L.
Jacobs
,
Int. J. Solids Struct.
39
,
5585
(
2002
).
4.
K.-A.
Van Den Abeele
,
P. A.
Johnson
,
R. A.
Guyer
, and
K. R.
McCall
,
J. Acoust. Soc. Am.
101
,
1885
(
1997
).
5.
K.-A.
Van Den Abeele
,
J.
Carmeliet
,
J. A.
Ten Cate
, and
P. A.
Johnson
,
J. Res. Nondestr. Eval.
12
,
31
(
2000
).
6.
J.
Rivière
,
G.
Renaud
,
R.
Guyer
, and
P.
Johnson
,
J. Appl. Phys.
114
,
054905
(
2013
).
7.
P.
Shokouhi
,
J.
Rivière
,
C. R.
Lake
,
P.-Y. L.
Bas
, and
T.
Ulrich
,
Ultrasonics
81
,
59
(
2017
).
8.
M.
Breazeale
and
J.
Ford
,
J. Appl. Phys.
36
,
3486
(
1965
).
9.
A.
Hikata
,
B. B.
Chick
, and
C.
Elbaum
,
J. Appl. Phys.
36
,
229
(
1965
).
10.
J.-Y.
Kim
,
L. J.
Jacobs
,
J.
Qu
, and
J. W.
Littles
,
J. Acoust. Soc. Am.
120
,
1266
(
2006
).
11.
G.
Kim
,
C.-W.
In
,
J.-Y.
Kim
,
K. E.
Kurtis
, and
L. J.
Jacobs
,
NDT&E Int.
67
,
64
(
2014
).
12.
H.
Sun
and
J.
Zhu
,
J. Acoust. Soc. Am.
145
,
EL405
(
2019
).
13.
R. L.
Weaver
and
O. I.
Lobkis
,
Ultrasonics
38
,
491
(
2000
).
14.
Y.
Lu
and
J. E.
Michaels
,
Ultrasonics
43
,
717
(
2005
).
15.
E.
Larose
and
S.
Hall
,
J. Acoust. Soc. Am.
125
,
1853
(
2009
).
16.
O. I.
Lobkis
and
R. L.
Weaver
,
Phys. Rev. Lett.
90
,
254302
(
2003
).
17.
G.
Dace
,
R.
Thompson
, and
O.
Buck
,
Review of Progress in Quantitative Nondestructive Evaluation, Volume 11B
(
Springer
,
1992
), Vol.
11
, pp.
2069
2076
.
18.
W. T.
Yost
and
J. H.
Cantrell
,
Review of Progress in Quantitative Nondestructive Evaluation
(
Springer
,
1993
), pp.
2067
2073
.
19.
L.
Ostrovsky
and
P.
Johnson
,
Riv. Nuovo Cimento Soc. Ital. Fis.
24
(
7
),
1
46
(
2001
).
20.
D.
Torello
,
N.
Selby
,
J.-Y.
Kim
,
J.
Qu
, and
L. J.
Jacobs
,
Ultrasonics
81
,
107
(
2017
).
21.
H.
Sun
,
Y.
Tang
,
C.
Malone
,
J.
Hu
, and
J.
Zhu
, in
12th International Workshop on Structural Health Monitoring
(
2019
).
22.
C.
Payan
,
V.
Garnier
,
J.
Moysan
, and
P. A.
Johnson
,
Appl. Phys. Lett.
94
,
011904
(
2009
).
23.
R. A.
Guyer
and
P. A.
Johnson
,
Phys. Today
52
(
4
),
30
(
1999
).
24.
E.
Niederleithinger
and
C.
Wunderlich
,
AIP Conf. Proc.
1511
,
390
397
(
2013
).
25.
R. A.
Guyer
and
P. A.
Johnson
,
Nonlinear Mesoscopic Elasticity: The Complex Behaviour of Rocks, Soil, Concrete
(
John Wiley & Sons
,
2009
).
You do not currently have access to this content.