Thanks to their high brightness, field emitters are the electron sources of choice in most high-end electron microscopes. Under typical operating conditions, the available emission current from these emitters is largely limited by practical considerations, and extracting significantly larger currents is usually not possible without reducing the lifetime of the emitter or even damaging it. Such limitations may, however, not apply if the emitter is only briefly subjected to extreme operating conditions so that damage can be outrun. Here, we demonstrate that it is possible to temporarily operate a Schottky emitter far outside its stable operating regime and significantly increase its emission current. We do so by locally heating the tip of the emitter with a microsecond laser pulse, which boosts the emission current by a factor of 3.7 to nearly 450 μA. We believe that the generation of intense microsecond electron pulses from a field emitter will particularly benefit the atomic-resolution imaging of fast processes that occur on the microsecond timescale.

1.
L.
Swanson
and
G.
Schwind
,
Handbook of Charged Particles Optics
, 2nd ed. (
CRC Press
,
2008
), pp.
1
28
.
2.
L. W.
Swanson
and
G. A.
Schwind
,
Adv. Imaging Electron Phys.
159
,
63
(
2009
).
3.
M. S.
Bronsgeest
,
Physics of Schottky Electron Sources
(
Jenny Stanford Publishing
,
2014
).
4.
M. T.
Otten
and
W. M. J.
Coene
,
Ultramicroscopy
48
,
77
(
1993
).
5.
A.
Bogner
,
P.-H.
Jouneau
,
G.
Thollet
,
D.
Basset
, and
C.
Gauthier
,
Micron
38
,
390
(
2007
).
6.
H.
Lichte
and
M.
Lehmann
,
Rep. Prog. Phys.
71
,
016102
(
2008
).
7.
O. F.
Mohammed
,
D.-S.
Yang
,
S. K.
Pal
, and
A. H.
Zewail
,
J. Am. Chem. Soc.
133
,
7708
(
2011
).
8.
A.
Feist
,
N.
Bach
,
N.
Rubiano da Silva
,
T.
Danz
,
M.
Möller
,
K. E.
Priebe
,
T.
Domröse
,
J. G.
Gatzmann
,
S.
Rost
,
J.
Schauss
,
S.
Strauch
,
R.
Bormann
,
M.
Sivis
,
S.
Schäfer
, and
C.
Ropers
,
Ultramicroscopy
176
,
63
(
2017
).
9.
F.
Houdellier
,
G. M.
Caruso
,
S.
Weber
,
M.
Kociak
, and
A.
Arbouet
,
Ultramicroscopy
186
,
128
(
2018
).
10.
P.
Das
,
J. D.
Blazit
,
M.
Tencé
,
L. F.
Zagonel
,
Y.
Auad
,
Y. H.
Lee
,
X. Y.
Ling
,
A.
Losquin
,
C.
Colliex
,
O.
Stéphan
,
F. J.
García de Abajo
, and
M.
Kociak
,
Ultramicroscopy
203
,
44
(
2019
).
11.
C.
Zhu
,
D.
Zheng
,
H.
Wang
,
M.
Zhang
,
Z.
Li
,
S.
Sun
,
P.
Xu
,
H.
Tian
,
Z.
Li
,
H.
Yang
, and
J.
Li
,
Ultramicroscopy
209
,
112887
(
2020
).
12.
T.
Niermann
,
M.
Lehmann
, and
T.
Wagner
,
Ultramicroscopy
182
,
54
(
2017
).
13.
A.
Feist
,
K. E.
Echternkamp
,
J.
Schauss
,
S. V.
Yalunin
,
S.
Schafer
, and
C.
Ropers
,
Nature
521
,
200
(
2015
).
14.
F.
Houdellier
,
L.
de Knoop
,
C.
Gatel
,
A.
Masseboeuf
,
S.
Mamishin
,
Y.
Taniguchi
,
M.
Delmas
,
M.
Monthioux
,
M. J.
Hytch
, and
E.
Snoeck
,
Ultramicroscopy
151
,
107
(
2015
).
15.
H.
Zhang
,
J.
Tang
,
J.
Yuan
,
Y.
Yamauchi
,
T. T.
Suzuki
,
N.
Shinya
,
K.
Nakajima
, and
L.-C.
Qin
,
Nat. Nanotechnol.
11
,
273
(
2016
).
16.
T.
Ishikawa
,
T.
Urata
,
B.
Cho
,
E.
Rokuta
,
C.
Oshima
,
Y.
Terui
,
H.
Saito
,
A.
Yonezawa
, and
T. T.
Tsong
,
Appl. Phys. Lett.
90
,
143120
(
2007
).
17.
K.
Liu
,
G. A.
Schwind
,
L. W.
Swanson
, and
J. A.
Campbell
,
J. Vac. Sci. Technol., B
28
,
C6C26
(
2010
).
18.
A.
Bahm
,
G.
Schwind
, and
L.
Swanson
,
J. Appl. Phys.
110
,
054322
(
2011
).
19.
P. C.
Tiemeijer
,
M.
Bischoff
,
B.
Freitag
, and
C.
Kisielowski
,
Ultramicroscopy
114
,
72
(
2012
).
20.
M. R.
Armstrong
,
K.
Boyden
,
N. D.
Browning
,
G. H.
Campbell
,
J. D.
Colvin
,
W. J.
DeHope
,
A. M.
Frank
,
D. J.
Gibson
,
F.
Hartemann
,
J. S.
Kim
,
W. E.
King
,
T. B.
LaGrange
,
B. J.
Pyke
,
B. W.
Reed
,
R. M.
Shuttlesworth
,
B. C.
Stuart
, and
B. R.
Torralva
,
Ultramicroscopy
107
,
356
(
2007
).
21.
L.
Zhang
,
J. P.
Hoogenboom
,
B.
Cook
, and
P.
Kruit
,
Struct. Dyn.
6
,
051501
(
2019
).
22.
A. H. V.
van Veen
,
C. W.
Hagen
,
J. E.
Barth
, and
P.
Kruit
,
J. Vac. Sci. Technol., B
19
,
2038
(
2001
).
23.
L. R.
Danielson
,
J. Appl. Phys.
52
,
6769
(
1981
).
24.
B.
Cook
,
T.
Verduin
,
C. W.
Hagen
, and
P.
Kruit
,
J. Vac. Sci. Technol., B
28
,
C6c74
(
2010
).
25.
P.
Hommelhoff
,
C.
Kealhofer
, and
M. A.
Kasevich
,
Phys. Rev. Lett.
97
,
247402
(
2006
).
26.
D.
Ehberger
,
J.
Hammer
,
M.
Eisele
,
M.
Kruger
,
J.
Noe
,
A.
Hogele
, and
P.
Hommelhoff
,
Phys. Rev. Lett.
114
,
227601
(
2015
).
27.
J.
Hoffrogge
,
J. P.
Stein
,
M.
Kruger
,
M.
Forster
,
J.
Hammer
,
D.
Ehberger
,
P.
Baum
, and
P.
Hommelhoff
,
J. Appl. Phys.
115
,
094506
(
2014
).
28.
R.
Bormann
,
S.
Strauch
,
S.
Schäfer
, and
C.
Ropers
,
J. Appl. Phys.
118
,
173105
(
2015
).
29.
B.
Cook
,
M.
Bronsgeest
,
K.
Hagen
, and
P.
Kruit
,
Ultramicroscopy
109
,
403
(
2009
).
30.
N.
Bach
,
T.
Domröse
,
A.
Feist
,
T.
Rittmann
,
S.
Strauch
,
C.
Ropers
, and
S.
Schäfer
,
Struct. Dyn.
6
,
014301
(
2019
).
31.
P.
Tolias
,
Nucl. Mater. Energy
13
,
42
(
2017
).
32.
M. A.
Ordal
,
R. J.
Bell
,
R. W.
Alexander
,
L. A.
Newquist
, and
M. R.
Querry
,
Appl. Opt.
27
,
1203
(
1988
).
33.
N. D.
Browning
,
M. A.
Bonds
,
G. H.
Campbell
,
J. E.
Evans
,
T.
LaGrange
,
K. L.
Jungjohann
,
D. J.
Masiel
,
J.
McKeown
,
S.
Mehraeen
,
B. W.
Reed
, and
M.
Santala
,
Curr. Opin. Solid State Mater. Sci.
16
,
23
(
2012
).
34.
M.
Picher
,
K.
Bücker
,
T.
LaGrange
, and
F.
Banhart
,
Ultramicroscopy
188
,
41
(
2018
).
You do not currently have access to this content.