We study the current tunable microwave signal properties of nano-constriction-based spin Hall nano-oscillators in oblique magnetic fields as a function of the nano-constriction width, w=50140 nm. The threshold current is found to scale linearly with w, defining a constant threshold current density of Jth= 1.7 × 108 A/cm2. While the current dependence of the microwave frequency shows the same generic nonmonotonic behavior for all w 80 nm, the quality of the generated microwave signal improves strongly with w, as the total power increases and the linewidth decreases linearly with w. As a consequence, the peak power for a 140 nm nano-constriction is about an order of magnitude higher than that for an 80 nm nano-constriction. The smallest nano-constriction, w= 50 nm, exhibits a different behavior with a higher power and a worse linewidth, indicating a crossover into a qualitatively different narrow-constriction regime.

1.
V. E.
Demidov
,
S.
Urazhdin
,
H.
Ulrichs
,
V.
Tiberkevich
,
A.
Slavin
,
D.
Baither
,
G.
Schmitz
, and
S. O.
Demokritov
, “
Magnetic nano-oscillator driven by pure spin current
,”
Nat. Mater.
11
,
1028
1031
(
2012
).
2.
L.
Liu
,
C.-F.
Pai
,
D. C.
Ralph
, and
R. A.
Buhrman
, “
Magnetic oscillations driven by the spin Hall effect in 3-terminal magnetic tunnel junction devices
,”
Phys. Rev. Lett.
109
,
186602
(
2012
).
3.
R. H.
Liu
,
W. L.
Lim
, and
S.
Urazhdin
, “
Spectral characteristics of the microwave emission by the spin Hall nano-oscillator
,”
Phys. Rev. Lett.
110
,
147601
(
2013
).
4.
V. E.
Demidov
,
H.
Ulrichs
,
S. V.
Gurevich
,
S. O.
Demokritov
,
V. S.
Tiberkevich
,
A. N.
Slavin
,
A.
Zholud
, and
S.
Urazhdin
, “
Synchronization of spin Hall nano-oscillators to external microwave signals
,”
Nat. Commun.
5
,
3179
(
2014
).
5.
H.
Ulrichs
,
V. E.
Demidov
, and
S. O.
Demokritov
, “
Micromagnetic study of auto-oscillation modes in spin-Hall nano-oscillators
,”
Appl. Phys. Lett.
104
,
042407
(
2014
).
6.
Z.
Duan
,
A.
Smith
,
L.
Yang
,
B.
Youngblood
,
J.
Lindner
,
V. E.
Demidov
,
S. O.
Demokritov
, and
I. N.
Krivorotov
, “
Nanowire spin torque oscillator driven by spin orbit torques
,”
Nat. Commun.
5
,
5616
(
2014
).
7.
V. E.
Demidov
,
S.
Urazhdin
,
A.
Zholud
,
A. V.
Sadovnikov
, and
S. O.
Demokritov
, “
Nanoconstriction-based spin-Hall nano-oscillator
,”
Appl. Phys. Lett.
105
,
172410
(
2014
).
8.
M.
Ranjbar
,
P.
Dürrenfeld
,
M.
Haidar
,
E.
Iacocca
,
M.
Balinskiy
,
T.
Le
,
M.
Fazlali
,
A.
Houshang
,
A.
Awad
,
R.
Dumas
, and
J.
Åkerman
, “
CoFeB-based spin Hall nano-oscillators
,”
IEEE Magn. Lett.
5
,
1
(
2014
).
9.
M.
Madami
,
G.
Gubbiotti
,
T.
Moriyama
,
K.
Tanaka
,
G.
Siracusano
,
M.
Carpentieri
,
G.
Finocchio
,
S.
Tacchi
,
T.
Ono
, and
G.
Carlotti
, “
Micro-focused Brillouin light scattering study of the magnetization dynamics driven by spin Hall effect in a transversely magnetized NiFe nanowire
,”
J. Appl. Phys.
117
,
17D504
(
2015
).
10.
H.
Mazraati
,
S.
Chung
,
A.
Houshang
,
M.
Dvornik
,
L.
Piazza
,
F.
Qejvanaj
,
S.
Jiang
,
T. Q.
Le
,
J.
Weissenrieder
, and
J.
Åkerman
, “
Low operational current spin Hall nano-oscillators based on NiFe/W bilayers
,”
Appl. Phys. Lett.
109
,
242402
(
2016
).
11.
T.
Chen
,
R. K.
Dumas
,
A.
Eklund
,
P. K.
Muduli
,
A.
Houshang
,
A. A.
Awad
,
P.
Dürrenfeld
,
B. G.
Malm
,
A.
Rusu
, and
J.
Åkerman
, “
Spin-torque and spin-Hall nano-oscillators
,”
Proc. IEEE
104
,
1919
1945
(
2016
).
12.
B.
Divinskiy
,
V.
Demidov
,
A.
Kozhanov
,
A.
Rinkevich
,
S.
Demokritov
, and
S.
Urazhdin
, “
Nanoconstriction spin-Hall oscillator with perpendicular magnetic anisotropy
,”
Appl. Phys. Lett.
111
,
032405
(
2017
).
13.
V.
Demidov
,
S.
Urazhdin
,
G.
De Loubens
,
O.
Klein
,
V.
Cros
,
A.
Anane
, and
S.
Demokritov
, “
Magnetization oscillations and waves driven by pure spin currents
,”
Phys. Rep.
673
,
1
31
(
2017
).
14.
M.
Zahedinejad
,
H.
Mazraati
,
H.
Fulara
,
J.
Yue
,
S.
Jiang
,
A. A.
Awad
, and
J.
Åkerman
, “
CMOS compatible W/CoFeB/MgO spin Hall nano-oscillators with wide frequency tunability
,”
Appl. Phys. Lett.
112
,
132404
132405
(
2018
).
15.
H.
Mazraati
,
S. R.
Etesami
,
S. A. H.
Banuazizi
,
S.
Chung
,
A.
Houshang
,
A. A.
Awad
,
M.
Dvornik
, and
J.
Åkerman
, “
Auto-oscillating spin-wave modes of constriction-based spin Hall nano-oscillators in weak in-plane fields
,”
Phys. Rev. Appl.
10
,
054017
(
2018
).
16.
N.
Sato
,
K.
Schultheiss
,
L.
Körber
,
N.
Puwenberg
,
T.
Mühl
,
A. A.
Awad
,
S. S.
Arekapudi
,
O.
Hellwig
,
J.
Fassbender
, and
H.
Schultheiss
, “
Domain wall based spin-Hall nano-oscillators
,”
Phys. Rev. Lett.
123
,
57204
(
2019
).
17.
M.
Tarequzzaman
,
T.
Böhnert
,
M.
Decker
,
J. D.
Costa
,
J.
Borme
,
B.
Lacoste
,
E.
Paz
,
A. S.
Jenkins
,
S.
Serrano-Guisan
,
C. H.
Back
,
R.
Ferreira
, and
P. P.
Freitas
, “
Spin torque nano-oscillator driven by combined spin injection from tunneling and spin Hall current
,”
Commun. Phys.
2
,
20
(
2019
).
18.
B.
Divinskiy
,
V.
Demidov
,
S.
Urazhdin
,
R.
Freeman
,
A.
Rinkevich
, and
S.
Demokritov
, “
Controllable excitation of quasi-linear and bullet modes in a spin-Hall nano-oscillator
,”
Appl. Phys. Lett.
114
,
042403
(
2019
).
19.
L.
Chen
,
S.
Urazhdin
,
Y.
Du
, and
R.
Liu
, “
Dynamical mode coupling and coherence in a spin Hall nano-oscillator with perpendicular magnetic anisotropy
,”
Phys. Rev. Appl.
11
,
064038
(
2019
).
20.
L.
Chen
,
K.
Zhou
,
S.
Urazhdin
,
W.
Jiang
,
Y.
Du
, and
R.
Liu
, “
Dynamical mode coexistence and chaos in a nanogap spin Hall nano-oscillator
,”
Phys. Rev. B
100
,
104436
(
2019
).
21.
J. E.
Hirsch
, “
Spin Hall effect
,”
Phys. Rev. Lett.
83
,
1834
1837
(
1999
).
22.
A.
Hoffmann
, “
Spin Hall effects in metals
,”
IEEE Trans. Magn.
49
,
5172
5193
(
2013
).
23.
J.
Sinova
,
S. O.
Valenzuela
,
J.
Wunderlich
,
C. H.
Back
, and
T.
Jungwirth
, “
Spin Hall effects
,”
Rev. Mod. Phys.
87
,
1213
1260
(
2015
).
24.
J. C.
Slonczewski
, “
Current-driven excitation of magnetic multilayers
,”
J. Magn. Magn. Mater.
159
,
L1
L7
(
1996
).
25.
L.
Berger
, “
Emission of spin waves by a magnetic multilayer traversed by a current
,”
Phys. Rev. B
54
,
9353
9358
(
1996
).
26.
D. C.
Ralph
and
M. D.
Stiles
, “
Spin transfer torques
,”
J. Magn. Magn. Mater.
320
,
1190
1216
(
2008
).
27.
A. A.
Awad
,
P.
Dürrenfeld
,
A.
Houshang
,
M.
Dvornik
,
E.
Iacocca
,
R. K.
Dumas
, and
J.
Åkerman
, “
Long-range mutual synchronization of spin Hall nano-oscillators
,”
Nat. Phys.
13
,
292
299
(
2017
).
28.
P.
Dürrenfeld
,
A. A.
Awad
,
A.
Houshang
,
R. K.
Dumas
, and
J.
Åkerman
, “
A 20 nm spin Hall nano-oscillator
,”
Nanoscale
9
,
1285
1291
(
2017
).
29.
B.
Divinskiy
,
S.
Urazhdin
,
V. E.
Demidov
,
A.
Kozhanov
,
A. P.
Nosov
,
A. B.
Rinkevich
, and
S. O.
Demokritov
, “
Magnetic droplet solitons generated by pure spin currents
,”
Phys. Rev. B
96
,
224419
(
2017
).
30.
H.
Fulara
,
M.
Zahedinejad
,
R.
Khymyn
,
A. A.
Awad
,
S.
Muralidhar
,
M.
Dvornik
, and
J.
Åkerman
, “
Spin-orbit torque-driven propagating spin waves
,”
Sci. Adv.
5
,
eaax8467
(
2019
).
31.
B.
Divinskiy
,
V. E.
Demidov
,
S.
Urazhdin
,
R.
Freeman
,
A. B.
Rinkevich
, and
S. O.
Demokritov
, “
Excitation and amplification of spin waves by spin–orbit torque
,”
Adv. Mater.
30
,
1802837
(
2018
).
32.
M.
Zahedinejad
,
A. A.
Awad
,
P.
Durrenfeld
,
A.
Houshang
,
Y.
Yin
,
P. K.
Muduli
, and
J.
Akerman
, “
Current modulation of nanoconstriction spin-Hall nano-oscillators
,”
IEEE Magn. Lett.
8
,
1
4
(
2017
).
33.
T.
Hache
,
T.
Weinhold
,
K.
Schultheiss
,
J.
Stigloher
,
F.
Vilsmeier
,
C.
Back
,
S. S.
Arekapudi
,
O.
Hellwig
,
J.
Fassbender
, and
H.
Schultheiss
, “
Combined frequency and time domain measurements on injection-locked, constriction-based spin Hall nano-oscillators
,”
Appl. Phys. Lett.
114
,
102403
(
2019
).
34.
M.
Zahedinejad
,
A. A.
Awad
,
S.
Muralidhar
,
R.
Khymyn
,
H.
Fulara
,
H.
Mazraati
,
M.
Dvornik
, and
J.
Åkerman
, “
Two-dimensional mutually synchronized spin Hall nano-oscillator arrays for neuromorphic computing
,”
Nat. Nanotechnol.
15
,
47
(
2020
).
35.
M.
Dvornik
,
A. A.
Awad
, and
J.
Åkerman
, “
Origin of magnetization auto-oscillations in constriction-based spin Hall nano-oscillators
,”
Phys. Rev. Appl.
9
,
014017
(
2018
).
36.
A.
Slavin
and
V.
Tiberkevich
, “
Nonlinear auto-oscillator theory of microwave generation by spin-polarized current
,”
IEEE Trans. Magn.
45
,
1875
1918
(
2009
).
37.
G.
Gerhart
,
E.
Bankowski
,
G. A.
Melkov
,
V. S.
Tiberkevich
, and
A. N.
Slavin
, “
Angular dependence of the microwave-generation threshold in a nanoscale spin-torque oscillator
,”
Phys. Rev. B
76
,
024437
(
2007
).
38.
J. V.
Kim
,
V.
Tiberkevich
, and
A. N.
Slavin
, “
Generation linewidth of an auto-oscillator with a nonlinear frequency shift: Spin-torque nano-oscillator
,”
Phys. Rev. Lett.
100
,
017207
(
2008
).
39.
V. S.
Tiberkevich
,
R. S.
Khymyn
,
H. X.
Tang
, and
A. N.
Slavin
, “
Sensitivity to external signals and synchronization properties of a non-isochronous auto-oscillator with delayed feedback
,”
Sci. Rep.
4
,
3873
(
2015
).
You do not currently have access to this content.