A high-frequency diode is an essential component in electrical circuits providing the current rectification function for AC/DC converters, radio frequency detectors, and automotive inverters. Schottky barrier diodes based on wide-bandgap semiconductors are promising for the high-frequency applications owing to short reverse recovery time that minimizes the energy dissipation during the switching. In this study, we report dynamic characteristics of Schottky junctions composed of a layered oxide metal PdCoO2 and an n-type β-Ga2O3 substrate. Rectifying current–voltage characteristics with reasonably small hysteresis were demonstrated up to a high frequency of 3 MHz in the PdCoO2/β-Ga2O3 Schottky junctions. For the on-state to off-state switching with the current ramp rate of approximately −2 × 1010 A/scm2, the reverse recovery time was as short as 11 ns. The short reverse recovery time was constantly obtained in the operation temperature range of 25–350 °C, showing low-loss switching properties of the PdCoO2/β-Ga2O3 Schottky junctions. The Schottky barrier height of ∼1.78 eV and the ideality factor of ∼1.06 were maintained after the 108-times on–off switching cycles. The fast switching with less energy dissipation and high durability of the PdCoO2/β-Ga2O3 Schottky junctions would be suitable for application in high-frequency power devices operating at high temperature.

1.
B. J.
Baliga
,
Fundamentals of Power Semiconductor Devices
(
Springer
,
New York
,
2008
).
2.
M.
Trivedi
and
K.
Shenai
,
J. Appl. Phys.
85
,
6889
6897
(
1999
).
3.
J. Y.
Tsao
,
C.
Chowdhury
,
M. A.
Hollis
,
D.
Jena
,
N. M.
Johnson
,
K. A.
Jones
,
R. J.
Kaplar
,
S.
Rajan
,
C. G.
Van de Walle
,
E.
Bellotti
,
C. L.
Chua
,
R.
Collazo
,
M. E.
Coltrin
,
J. A.
Cooper
,
K. R.
Evans
,
S.
Graham
,
T. A.
Grotjohn
,
E. R.
Heller
,
M.
Higashiwaki
,
M. S.
Islam
,
P. W.
Juodawlkis
,
M. A.
Khan
,
A. D.
Koehler
,
J. H.
Leach
,
U. K.
Mishra
,
R. J.
Nemanich
,
R. C. N.
Pilawa-Podgurski
,
J. B.
Shealy
,
Z.
Sitar
,
M. J.
Tadjer
,
A. F.
Witulski
,
M.
Wraback
, and
J. A.
Simmons
,
Adv. Electron. Mater.
4
,
1600501
(
2018
).
4.
K.
Sasaki
,
M.
Higashiwaki
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
,
IEEE Electron Device Lett.
34
,
493
495
(
2013
).
5.
S.
Müller
,
H.
von Wenckstern
,
F.
Schmidt
,
D.
Splith
,
F.-L.
Schein
,
H.
Frenzel
, and
M.
Grundmann
,
Appl. Phys. Express
8
,
121102
(
2015
).
6.
J.
Yang
,
S.
Ahn
,
F.
Ren
,
S. J.
Pearton
,
S.
Jang
,
J.
Kim
, and
A.
Kuramata
,
Appl. Phys. Lett.
110
,
192101
(
2017
).
7.
K.
Konishi
,
K.
Goto
,
H.
Murakami
,
Y.
Kumagai
,
A.
Kuramata
,
S.
Yamakoshi
, and
M.
Higashiwaki
,
Appl. Phys. Lett.
110
,
103506
(
2017
).
8.
S. J.
Pearton
,
F.
Ren
,
M.
Tadjer
, and
J.
Kim
,
J. Appl. Phys.
124
,
220901
(
2018
).
9.
C.
Hou
,
R. M.
Gazoni
,
R. J.
Reeves
, and
M. W.
Allen
,
Appl. Phys. Lett.
114
,
033502
(
2019
).
10.
T.
Harada
,
S.
Ito
, and
A.
Tsukazaki
,
Sci. Adv.
5
,
eaax5733
(
2019
).
11.
T.
Harada
and
A.
Tsukazaki
,
AIP Adv.
7
,
085011
(
2017
).
12.
T.
Harada
and
A.
Tsukazaki
,
Proc. SPIE
10533
,
105330X
(
2018
).
13.
B.
Song
,
A. K.
Verma
,
K.
Nomoto
,
M.
Zhu
,
D.
Jena
, and
H. G.
Xing
, in
2016 74th Annual Device Research Conference
(
IEEE
,
2016
), Vol.
3
, pp.
1
2
.
14.
J.
Yang
,
S.
Ahn
,
F.
Ren
,
S. J.
Pearton
,
S.
Jang
, and
A.
Kuramata
,
IEEE Electron Device Lett.
38
,
906
909
(
2017
).
15.
Q.
He
,
W.
Mu
,
B.
Fu
,
Z.
Jia
,
S.
Long
,
Z.
Yu
,
Z.
Yao
,
W.
Wang
,
H.
Dong
,
Y.
Qin
,
G.
Jian
,
Y.
Zhang
,
H.
Xue
,
H.
Lv
,
Q.
Liu
,
M.
Tang
,
X.
Tao
, and
M.
Liu
,
IEEE Electron Device Lett.
39
,
556
559
(
2018
).
16.
A.
Takatsuka
,
K.
Sasaki
,
D.
Wakimoto
,
Q. T.
Thieu
,
Y.
Koishikawa
,
J.
Arima
,
J.
Hirabayashi
,
D.
Inokuchi
,
Y.
Fukumitsu
,
A.
Kuramata
, and
S.
Yamakoshi
, in
Proceedings of the 76th Device Research Conference (DRC)
(
2018
), pp.
1
2
.
17.
J.
Yang
,
F.
Ren
,
Y.-T.
Chen
,
Y.-T.
Liao
,
C.-W.
Chang
,
J.
Lin
,
M. J.
Tadjer
,
S. J.
Pearton
, and
A.
Kuramata
,
J. Electron Devices Soc.
7
,
57
61
(
2019
).
18.
X.
Lu
,
X.
Zhang
,
H.
Jiang
,
X.
Zou
,
K. M.
Lau
, and
G.
Wang
,
Phys. Status Solidi A
217
,
1900497
(
2020
).
19.
Y.-T.
Chen
,
J.
Yang
,
F.
Ren
,
C.-W.
Chang
,
J.
Lin
,
S. J.
Pearton
,
M. J.
Tadjer
,
A.
Kuramata
, and
Y.-T.
Liao
,
ECS J. Solid State Sci. Technol.
8
,
Q3229
Q3234
(
2019
).
20.
J.
Yang
,
F.
Ren
,
S. J.
Pearton
, and
A.
Kuramata
,
IEEE Trans. Electron Devices
65
,
2790
2796
(
2018
).
21.
J.
Yang
,
G. J.
Koller
,
C.
Fares
,
F.
Ren
,
S. J.
Pearton
,
J.
Bae
,
J.
Kim
, and
D. J.
Smith
,
ECS J. Solid State Sci. Technol.
8
,
Q3041
Q3045
(
2019
).
22.
J.
Yang
,
F.
Ren
,
M.
Tadjer
,
S. J.
Pearton
, and
A.
Kuramata
,
AIP Adv.
8
,
055026
(
2018
).
23.
J.
Yang
,
F.
Ren
,
M.
Tadjer
,
S. J.
Pearton
, and
A.
Kuramata
,
ECS J. Solid State Sci. Technol.
7
,
Q92
Q96
(
2018
).
24.
J.
Yang
,
M.
Xian
,
P.
Carey
,
C.
Fares
,
J.
Partain
,
F.
Ren
,
M.
Tadjer
,
E.
Anber
,
D.
Foley
,
A.
Lang
,
J.
Hart
,
J.
Nathaniel
,
M. L.
Taheri
,
S. J.
Pearton
, and
A.
Kuramata
,
Appl. Phys. Lett.
114
,
232106
(
2019
).
25.
S.
Yin
,
Y.
Liu
,
Y.
Liu
,
K. J.
Tseng
,
J.
Pou
, and
R.
Simanjorang
,
IEEE Trans. Ind. Electron.
65
,
1051
1061
(
2018
).
26.
H.
Hoeneisen
,
C. A.
Mead
, and
M. A.
Nicolet
,
Solid State Electron.
14
,
1057
1059
(
1971
).
27.
S. J.
Pearton
,
J.
Yang
,
P. H.
Cary
 IV
,
F.
Ren
,
J.
Kim
,
M. J.
Tadjer
, and
M. A.
Mastro
,
Appl. Phys. Rev.
5
,
011301
(
2018
).
28.
U.
Scheuermann
,
Microelectron. Reliab.
49
,
1319
1325
(
2009
).
29.
E.
Zanoni
,
M.
Meneghini
,
A.
Chini
,
D.
Marcon
, and
G.
Meneghesso
,
IEEE Trans. Electron Devices
60
,
3119
3131
(
2013
).
30.
S. M.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
(
Wiley
,
Hoboken
,
2006
).
31.
H.
He
,
R.
Orlando
,
M. A.
Blanco
,
R.
Pandey
,
E.
Amzallag
,
I.
Baraille
, and
M.
Rérat
,
Phys. Rev. B
74
,
195123
(
2006
).
32.
A.
Feinberg
,
Thermodynamic Degradation Science: Physics of Failure, Accelerated Testing, Fatigue, and Reliability Applications
(
Wiley
,
2016
).

Supplementary Material

You do not currently have access to this content.