Frequency entangled photons have potential for various quantum applications. Recently, on-chip photon-pair sources made by CMOS compatible processes have attracted attention. In this paper, we report broadband generation of photon-pairs via a spontaneous four-wave mixing process using a CMOS compatible ring resonator. We performed frequency-correlation between the signal and idler photons by frequency-resolved coincidence detection and confirmed that the signal and idler photons are correlated over 59 frequency modes, a bandwidth of 23.6 nm, which are the largest numbers achieved to date. Furthermore, we reproduced the experimentally observed joint spectral intensity from the obtained transmission spectrum of the resonator involving the information of the dispersion of the device.

1.
A. F.
Abouraddy
,
M. B.
Nasr
,
B. E.
Saleh
,
A. V.
Sergienko
, and
M. C.
Teich
, “
Quantum-optical coherence tomography with dispersion cancellation
,”
Phys. Rev. A
65
,
6
(
2002
).
2.
H.-H.
Lu
,
J. M.
Lukens
,
N. A.
Peters
,
B. P.
Williams
,
A. M.
Weiner
, and
P.
Lougovski
, “
Quantum interference and correlation control of frequency-bin qubits
,”
Optica
5
,
1455
(
2018
).
3.
M. B.
Nasr
,
B. E. A.
Saleh
,
A. V.
Sergienko
, and
M. C.
Teich
, “
Demonstration of dispersion-canceled quantum-optical coherence tomography
,”
Phys. Rev. Lett.
91
,
83601
(
2003
).
4.
M.
Okano
,
H. H.
Lim
,
R.
Okamoto
,
N.
Nishizawa
,
S.
Kurimura
, and
S.
Takeuchi
, “
0.54 μm resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography
,”
Sci. Rep.
5
,
1
8
(
2016
).
5.
B.
Dayan
,
A.
Pe'er
,
A. A.
Friesem
, and
Y.
Silberberg
, “
Two photon absorption and coherent control with broadband down-converted light
,”
Phys. Rev. Lett.
93
,
023005
(
2004
).
6.
H.
Oka
, “
Efficient selective two-photon excitation by tailored quantum-correlated photons
,”
Phys. Rev. A
81
,
1
4
(
2010
).
7.
H.
Oka
, “
Enhanced vibrational-mode-selective two-step excitation using ultrabroadband frequency-entangled photons
,”
Phys. Rev. A
97
,
1
6
(
2018
).
8.
S.
Lloyd
, “
Enhanced sensitivity of photodetection via quantum illumination
,”
Science
321
,
1463
1465
(
2008
).
9.
L.
Sheridan
and
V.
Scarani
, “
Security proof for quantum key distribution using qudit systems
,”
Phys. Rev. A
82
,
030301
(
2010
).
10.
A.
Tanaka
,
R.
Okamoto
,
H. H.
Lim
,
S.
Subashchandran
,
M.
Okano
,
L.
Zhang
,
L.
Kang
,
J.
Chen
,
P.
Wu
,
T.
Hirohata
,
S.
Kurimura
, and
S.
Takeuchi
, “
Noncollinear parametric fluorescence by chirped quasi-phase matching for monocycle temporal entanglement
,”
Opt. Express
20
,
25228
(
2012
).
11.
M. B.
Nasr
,
S.
Carrasco
,
B. E.
Saleh
,
A. V.
Sergienko
,
M. C.
Teich
,
J. P.
Torres
,
L.
Torner
,
D. S.
Hum
, and
M. M.
Fejer
, “
Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion
,”
Phys. Rev. Lett.
100
,
1
4
(
2008
).
12.
M.
Kues
,
C.
Reimer
,
J. M.
Lukens
,
W. J.
Munro
,
A. M.
Weiner
,
D. J.
Moss
, and
R.
Morandotti
, “
Quantum optical microcombs
,”
Nat. Photonics
13
,
170
179
(
2019
).
13.
J. W.
Silverstone
,
D.
Bonneau
,
K.
Ohira
,
N.
Suzuki
,
H.
Yoshida
,
N.
Iizuka
,
M.
Ezaki
,
C. M.
Natarajan
,
M. G.
Tanner
,
R. H.
Hadfield
,
V.
Zwiller
,
G. D.
Marshall
,
J. G.
Rarity
,
J. L.
O'brien
, and
M. G.
Thompson
, “
On-chip quantum interference between silicon photon-pair sources
,”
Nat. Photonics
8
,
104
108
(
2014
).
14.
D. J.
Moss
,
R.
Morandotti
,
A. L.
Gaeta
, and
M.
Lipson
, “
New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics
,”
Nat. Photonics
7
,
597
607
(
2013
).
15.
Q.
Li
,
A.
Singh
,
X.
Lu
,
J.
Lawall
,
V.
Verma
,
R.
Mirin
,
S. W.
Nam
, and
K.
Srinivasan
, “
Tunable quantum beat of single photons enabled by nonlinear nanophotonics
,”
Phys. Rev. Appl.
10
,
054054
(
2019
).
16.
F.
Samara
,
A.
Martin
,
C.
Autebert
,
M.
Karpov
,
T. J.
Kippenberg
,
H.
Zbinden
, and
R.
Thew
, “
High-rate photon pairs and sequential time-bin entanglement with Si3N4 microring resonators
,”
Opt. Express
27
,
19309
(
2019
).
17.
M.
Kues
,
C.
Reimer
,
P.
Roztocki
,
L. R.
Cortés
,
S.
Sciara
,
B.
Wetzel
,
Y.
Zhang
,
A.
Cino
,
S. T.
Chu
,
B. E.
Little
,
D. J.
Moss
,
L.
Caspani
,
J.
Azaña
, and
R.
Morandotti
, “
On-chip generation of high-dimensional entangled quantum states and their coherent control
,”
Nature
546
,
622
626
(
2017
).
18.
P.
Imany
,
J. A.
Jaramillo-Villegas
,
O. D.
Odele
,
K.
Han
,
D. E.
Leaird
,
J. M.
Lukens
,
P.
Lougovski
,
M.
Qi
, and
A. M.
Weiner
, “
50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator
,”
Opt. Express
26
,
1825
(
2018
).
19.
K.
Sugiura
,
R.
Okamoto
,
L.
Zhang
,
L.
Kang
,
J.
Chen
,
P.
Wu
,
S. T.
Chu
,
B. E.
Little
, and
S.
Takeuchi
, “
An on-chip photon-pair source with negligible two-photon absorption
,”
Appl. Phys. Express
12
,
022006
(
2019
).
20.
W.
Wang
,
S. T.
Chu
,
B. E.
Little
,
A.
Pasquazi
,
Y.
Wang
,
L.
Wang
,
W.
Zhang
,
L.
Wang
,
X.
Hu
,
G.
Wang
,
H.
Hu
,
Y.
Su
,
F.
Li
,
Y.
Liu
, and
W.
Zhao
, “
Dual-pump Kerr micro-cavity optical frequency comb with varying FSR spacing
,”
Sci. Rep.
6
,
28501
(
2016
).
21.
S.
Subashchandran
,
R.
Okamoto
,
L.
Zhang
,
A.
Tanaka
,
M.
Okano
,
L.
Kang
,
J.
Chen
,
P.
Wu
, and
S.
Takeuchi
, “
Investigation of the performance of an ultralow-dark-count superconducting nanowire single-photon detector
,”
Jpn. J. Appl. Phys., Part 1
52
,
102801
(
2013
).
22.
J.
Chen
,
Z. H.
Levine
,
J.
Fan
, and
A. L.
Migdall
, “
Frequency-bin entangled comb of photon pairs from a silicon-on-insulator micro-resonator
,”
Opt. Express
19
,
1470
(
2011
).
23.
C.
Xiong
,
L. G.
Helt
,
A. C.
Judge
,
G. D.
Marshall
,
M. J.
Steel
,
J. E.
Sipe
, and
B. J.
Eggleton
, “
Quantum-correlated photon pair generation in chalcogenide As2S3 waveguides
,”
Opt. Express
18
,
16206
(
2010
).
You do not currently have access to this content.