With a Curie temperature just above room temperature, AlFe2B2 is a useful magnetocaloric material composed of earth-abundant elements. We employ temperature-dependent high-resolution synchrotron X-ray diffraction to establish with high certainty that the paramagnetic to ferromagnetic transition in AlFe2B2 is of second order, showing no discontinuity in lattice parameters or cell volume. Nevertheless, the lattice parameters undergo anisotropic changes across the transition with distinct differences in the thermal expansion coefficients. While the a and b lattice parameters show a positive thermal expansion, c shows a negative thermal expansion. We link these changes to the respective interatomic distances to determine the contribution of magnetism to the anisotropic structural evolution. The work underpins the possible role of magnetostructural coupling in driving the magnetocaloric effect in AlFe2B2.

1.
V.
Franco
,
J.
Blázquez
,
B.
Ingale
, and
A.
Conde
, “
The magnetocaloric effect and magnetic refrigeration near room temperature: Materials and models
,”
Annu. Rev. Mater. Res.
42
,
305
342
(
2012
).
2.
V.
Franco
,
J.
Blázquez
,
J.
Ipus
,
J.
Law
,
L.
Moreno-Ramírez
, and
A.
Conde
, “
Magnetocaloric effect: From materials research to refrigeration devices
,”
Prog. Mater. Sci.
93
,
112
232
(
2018
).
3.
G.
Brown
, “
Magnetic heat pumping near room temperature
,”
J. Appl. Phys.
47
,
3673
3680
(
1976
).
4.
J. D.
Bocarsly
,
E. E.
Levin
,
S. A.
Humphrey
,
T.
Faske
,
W.
Donner
,
S. D.
Wilson
, and
R.
Seshadri
, “
Magnetostructural coupling drives magnetocaloric behavior: The case of MnB versus FeB
,”
Chem. Mater.
31
,
4873
4881
(
2019
).
5.
X.
Tan
,
P.
Chai
,
C. M.
Thompson
, and
M.
Shatruk
, “
Magnetocaloric effect in AlFe2B2: Toward magnetic refrigerants from earth-abundant elements
,”
J. Am. Chem. Soc.
135
,
9553
9557
(
2013
).
6.
P.
Chai
,
S. A.
Stoian
,
X.
Tan
,
P. A.
Dube
, and
M.
Shatruk
, “
Investigation of magnetic properties and electronic structure of layered-structure borides AlT2B2 (T = Fe, Mn, Cr) and AlFe2−xMnxB2
,”
J. Solid State Chem.
224
,
52
61
(
2015
).
7.
S.
Hirt
,
F.
Yuan
,
Y.
Mozharivskyj
, and
H.
Hillebrecht
, “
AlFe2−xCoxB2 (x = 0–0.30): TC Tuning through Co substitution for a promising magnetocaloric material realized by spark plasma sintering
,”
Inorg. Chem.
55
,
9677
9684
(
2016
).
8.
R.
Barua
,
B.
Lejeune
,
B.
Jensen
,
L.
Ke
,
R.
McCallum
,
M.
Kramer
, and
L.
Lewis
, “
Enhanced room-temperature magnetocaloric effect and tunable magnetic response in Ga-and Ge-substituted AlFe2B2
,”
J. Alloys Compd.
777
,
1030
1038
(
2019
).
9.
M.
Fries
,
Z.
Gercsi
,
S.
Ener
,
K. P.
Skokov
, and
O.
Gutfleisch
, “
Magnetic, magnetocaloric and structural properties of manganese based monoborides doped with iron and cobalt—A candidate for thermomagnetic generators
,”
Acta Mater.
113
,
213
220
(
2016
).
10.
E. E.
Levin
,
J. D.
Bocarsly
,
K. E.
Wyckoff
,
T. M.
Pollock
, and
R.
Seshadri
, “
Tuning the magnetocaloric response in half-Heusler/Heusler MnNi1+xSb solid solutions
,”
Phys. Rev. Mater.
1
,
075003
(
2017
).
11.
E. E.
Levin
,
J. D.
Bocarsly
,
J. H.
Grebenkemper
,
R.
Issa
,
S. D.
Wilson
,
T. M.
Pollock
, and
R.
Seshadri
, “
Structural coupling and magnetic tuning in Mn2−xCoxP magnetocalorics for thermomagnetic power generation
,”
APL Mater.
(
2019
) (to be published).
12.
J. A.
Cooley
,
M. K.
Horton
,
E. E.
Levin
,
S. H.
Lapidus
,
K. A.
Persson
, and
R.
Seshadri
, “
From waste-heat recovery to refrigeration: Compositional tuning of magnetocaloric Mn1+xSb
,”
Chem. Mater.
32
,
1243
1249
(
2020
).
13.
V. K.
Pecharsky
and
K. A.
Gschneidner
, Jr.
, “
Giant Magnetocaloric Effect in Gd5(Si2Ge2)
,”
Phys. Rev. Lett.
78
,
4494
4497
(
1997
).
14.
W.
Choe
,
V. K.
Pecharsky
,
A. O.
Pecharsky
,
K. A.
Gschneidner
,
V. G.
Young
, and
G. J.
Miller
, “
Making and breaking covalent bonds across the magnetic transition in the giant magnetocaloric material Ge5(Si2Ge2)
,”
Phys. Rev. Lett.
84
,
4617
4620
(
2000
).
15.
A.
Davarpanah
,
J. H.
Belo
,
V. S.
Amaral
, and
J. S.
Amaral
, “
On the optimization of magneto-volume coupling for practical applied field magnetic refrigeration
,”
Phys. Status Solidi
256
,
1800419
(
2019
).
16.
C. P.
Bean
and
D. S.
Rodbell
, “
Magnetic disorder as a first-order phase transformation
,”
Phys. Rev.
126
,
104
115
(
1962
).
17.
V.
Franco
,
J. Y.
Law
,
A.
Conde
,
V.
Brabander
,
D. Y.
Karpenkov
,
I.
Radulov
,
K.
Skokov
, and
O.
Gutfleisch
, “
Predicting the tricritical point composition of a series of LaFeSi magnetocaloric alloys via universal scaling
,”
J. Phys. D: Appl. Phys.
50
,
414004
(
2017
).
18.
N. H.
Dung
,
L.
Zhang
,
Z.
Ou
, and
E.
Brück
, “
From first-order magneto-elastic to magneto-structural transition in (Mn,Fe)1.95 P0.50Si0.50 compounds
,”
Appl. Phys. Lett.
99
,
092511
(
2011
).
19.
J. D.
Bocarsly
,
E. E.
Levin
,
C. A.
Garcia
,
K.
Schwennicke
,
S. D.
Wilson
, and
R.
Seshadri
, “
A simple computational proxy for screening magnetocaloric compounds
,”
Chem. Mater.
29
,
1613
1622
(
2017
).
20.
C. A. C.
Garcia
,
J. D.
Bocarsly
, and
R.
Seshadri
, “
Computational screening of magnetocaloric alloys
,”
Phys. Rev. Mater.
4
,
024402
(
2020
).
21.
W.
Jeitschko
, “
The crystal structure of Fe2AlB2
,”
Acta Crystallogr., Sect. B
25
,
163
165
(
1969
).
22.
B.
Lejeune
,
D. L.
Schlagel
,
B.
Jensen
,
T. A.
Lograsso
,
M. J.
Kramer
, and
L.
Lewis
, “
Effects of Al and Fe solubility on the magnetofunctional properties of AlFe2B2
,”
Phys. Rev. Mater.
3
,
094411
(
2019
).
23.
A. E.
Boukili
,
N.
Tahiri
,
E.
Salmani
,
H.
Ez-Zahraouy
,
M.
Hamedoun
,
A.
Benyoussef
,
M.
Balli
, and
O.
Mounkachi
, “
Magnetocaloric and cooling properties of the intermetallic compound AlFe2B2 in an AMR cycle system
,”
Intermetallics
104
,
84
89
(
2019
).
24.
J.
Elliott
,
S.
Legvold
, and
F.
Spedding
, “
Some magnetic properties of gadolinium metal
,”
Phys. Rev.
91
,
28
(
1953
).
25.
L.
Lewis
,
R.
Barua
, and
B.
Lejeune
, “
Developing magnetofunctionality: Coupled structural and magnetic phase transition in AlFe2B2
,”
J. Alloys Compd.
650
,
482
488
(
2015
).
26.
J.
Cedervall
,
M. S.
Andersson
,
T.
Sarkar
,
E. K.
Delczeg-Czirjak
,
L.
Bergqvist
,
T. C.
Hansen
,
P.
Beran
,
P.
Nordblad
, and
M.
Sahlberg
, “
Magnetic structure of the magnetocaloric compound AlFe2B2
,”
J. Alloys Compd.
664
,
784
791
(
2016
).
27.
T. N.
Lamichhane
,
L.
Xiang
,
Q.
Lin
,
T.
Pandey
,
D. S.
Parker
,
T.-H.
Kim
,
L.
Zhou
,
M. J.
Kramer
,
S. L.
Bud'ko
, and
P. C.
Canfield
, “
Magnetic properties of single crystalline itinerant ferromagnet AlFe2B2
,”
Phys. Rev. Mater.
2
,
084408
(
2018
).
28.
B. T.
Lejeune
,
X.
Du
,
R.
Barua
,
J.-C.
Zhao
, and
L. H.
Lewis
, “
Anisotropic thermal conductivity of magnetocaloric AlFe2B2
,”
Acta Mater.
1
,
150
154
(
2018
).
29.
T.
Ali
,
M.
Khan
,
E.
Ahmed
, and
A.
Ali
, “
Phase analysis of AlFe2B2 by synchrotron x-ray diffraction, magnetic and Mössbauer studies
,”
Prog. Nat. Sci. Mater.
27
,
251
256
(
2017
).
30.
J. D.
Bocarsly
,
R. F.
Need
,
R.
Seshadri
, and
S. D.
Wilson
, “
Magnetoentropic signatures of skyrmionic phase behavior in FeGe
,”
Phys. Rev. B
97
,
100404
(
2018
).
31.
A. A.
Coelho
, “
TOPAS and TOPAS-Academic: An optimization program integrating computer algebra and crystallographic objects written in C++
,”
J. Appl. Crystallogr.
51
,
210
218
(
2018
).
32.
G. W.
Stinton
and
J. S.
Evans
, “
Parametric Rietveld refinement
,”
J. Appl. Crystallogr.
40
,
87
95
(
2007
).
33.
K.
Momma
and
F.
Izumi
, “
VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data
,”
J. Appl. Crystallogr.
44
,
1272
1276
(
2011
).
34.
R.
Barua
,
B.
Lejeune
,
L.
Ke
,
G.
Hadjipanayis
,
E. M.
Levin
,
R.
McCallum
,
M.
Kramer
, and
L.
Lewis
, “
Anisotropic magnetocaloric response in AlFe2B2
,”
J. Alloys Compd.
745
,
505
512
(
2018
).
35.
P. W.
Stephens
, “
Phenomenological model of anisotropic peak broadening in powder diffraction
,”
J. Appl. Crystallogr.
32
,
281
289
(
1999
).
36.
D.
Mondal
,
C.
Kamal
,
S.
Banik
,
A.
Bhakar
,
A.
Kak
,
G.
Das
,
V.
Reddy
,
A.
Chakrabarti
, and
T.
Ganguli
, “
Structural and electronic properties of Fe(AlxGa1−x)3 system
,”
J. Appl. Phys.
120
,
165102
(
2016
).
37.
M.
van Schilfgaarde
,
I.
Abrikosov
, and
B.
Johansson
, “
Origin of the Invar effect in iron–nickel alloys
,”
Nature
400
,
46
49
(
1999
).
38.
J. A.
Cooley
,
J. D.
Bocarsly
,
E. C.
Schueller
,
E. E.
Levin
,
E. E.
Rodriguez
,
A.
Huq
,
S. H.
Lapidus
,
S. D.
Wilson
, and
R.
Seshadri
, “
Evolution of non-collinear magnetism in magnetocaloric MnPtGa
,”
Phys. Rev. Mater.
4
(
4
),
044405
(
2020
).
39.
K. P.
Belov
,
Y. V.
Ergin
, and
A. A.
Ped'ko
, “
Magnetostriction of a Gadolinium single crystal
,”
J. Exp. Theor. Phys.
22
,
414
419
(
1966
).
40.
I.
Takeuchi
and
K.
Sandeman
, “
Solid-state cooling with caloric materials
,”
Phys. Today
68
(
12
),
48
(
2015
).

Supplementary Material

You do not currently have access to this content.