We introduce a strain-energy based nonlinear hyper-elastic formulation to model the material properties of ultrasoft dielectric elastomers over a wide range of elastic properties, prestretch, and thicknesses. We build on the uniaxial Gent formulation and, under the conditions of equi-biaxial strain, derive an expression for bulge deformation vs pressure. A circular bulge test methodology is developed to experimentally measure the mechanical response of the silicone membranes. The Gent model captures both neo-Hookean and strain-stiffening behaviors and gives predictions that are in agreement with experimental measurements. Membranes with different thinner fractions are characterized over nearly one order of magnitude variation in shear modulus. Stiffer membranes are observed to harden at lower stretch ratios due to the increased fraction of polymer chains in them. The present approach offers a simple and cost-effective procedure for characterizing soft membranes under commonly encountered biaxial deformation conditions.

1.
H.
Yuk
,
T.
Zhang
,
G. A.
Parada
,
X.
Liu
, and
X.
Zhao
, “
Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional microstructures
,”
Nat. Commun.
7
,
12028
(
2016
).
2.
J. M.
Stout
,
T. M.
Welker
, and
A. R.
Hawkins
, “
Electrostatically actuated membranes made from silica thin films
,”
Appl. Phys. Lett.
110
,
053105
(
2017
).
3.
E. T.
Roche
,
R.
Wohlfarth
,
J. T.
Overvelde
,
N. V.
Vasilyev
,
F. A.
Pigula
,
D. J.
Mooney
,
K.
Bertoldi
, and
C. J.
Walsh
, “
A bioinspired soft actuated material
,”
Adv. Mater.
26
,
1200
1206
(
2014
).
4.
J.
Bohnker
, “
Sensing and control of flows over membrane wings
,” Ph.D. thesis (
Brown University
,
2019
).
5.
A.
Song
,
X.
Tian
,
E.
Israeli
,
R.
Galvao
,
K.
Bishop
,
S.
Swartz
, and
K.
Breuer
, “
Aeromechanics of membrane wings with implications for animal flight
,”
AIAA J.
46
,
2096
2106
(
2008
).
6.
M.
Wissler
and
E.
Mazza
, “
Mechanical behavior of an acrylic elastomer used in dielectric elastomer actuators
,”
Sens. Actuators, A
134
,
494
504
(
2007
).
7.
S.
Michel
,
X. Q.
Zhang
,
M.
Wissler
,
C.
Löwe
, and
G.
Kovacs
, “
A comparison between silicone and acrylic elastomers as dielectric materials in electroactive polymer actuators
,”
Polym. Int.
59
,
391
399
(
2009
).
8.
R.
Sahu
and
K.
Patra
, “
Characterisation of tensile behaviour of a dielectric elastomer at large deformation
,”
J. Inst. Eng.
95
,
207
212
(
2014
).
9.
N. C.
Goulbourne
, “
A constitutive model of polyacrylate interpenetrating polymer networks for dielectric elastomers
,”
Int. J. Solid. Struct.
48
,
1085
1091
(
2011
).
10.
J.
Maláč
, “
Elastomers: Characterization of tensile behaviour at lower deformations
,”
Polym. Test.
24
,
790
792
(
2005
).
11.
R.
Palakodeti
and
M.
Kessler
, “
Influence of frequency and prestrain on the mechanical efficiency of dielectric electroactive polymer actuators
,”
Mater. Lett.
60
,
3437
3440
(
2006
).
12.
E.
Hajiesmaili
and
D. R.
Clarke
, “
Reconfigurable shape-morphing dielectric elastomers using spatially varying electric fields
,”
Nat. Commun.
10
,
183
(
2019
).
13.
L.
Léger
and
C.
Creton
, “
Adhesion mechanisms at soft polymer interfaces
,”
Philos. Trans. R. Soc. A
366
,
1425
1442
(
2008
).
14.
B.
Rashid
,
M.
Destrade
, and
M. D.
Gilchrist
, “
Mechanical characterization of brain tissue in compression at dynamic strain rates
,”
J. Mech. Behav. Biomed. Mater.
10
,
23
38
(
2012
).
15.
R. W.
Ogden
, “
Large deformation isotropic elasticity: On the correlation of theory and experiment for incompressible rubberlike solids
,”
Proc. R. Soc. London A
326
,
565
584
(
1972
).
16.
O. H.
Yeoh
, “
Some forms of the strain energy function for rubber
,”
Rubber Chem. Technol.
66
,
754
771
(
1993
).
17.
E. M.
Arruda
and
M. C.
Boyce
, “
A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials
,”
J. Mech. Phys. Solids
41
,
389
412
(
1993
).
18.
A.
Gent
, “
A new constitutive relation for rubber
,”
Rubber Chem. Technol.
69
,
59
61
(
1996
).
19.
D.
Hao
,
D.
Li
, and
Y.
Liao
, “
Hyperelasticity, dynamic mechanical property, and rheology of addition-type silicone rubber (VPDMS cured by PMHS)
,”
J. Appl. Polym. Sci.
132
,
42036
(
2015
).
20.
T.
Beda
, “
Modeling hyperelastic behavior of rubber: A novel invariant-based and a review of constitutive models
,”
J. Polym. Sci. B
45
,
1713
1732
(
2007
).
21.
J.-S.
Plante
, “
Dielectric elastomer actuators for binary robotics and mechatronics
,” Ph.D. thesis (
Dept. of Mechanical Engineering, Massachusetts Institute of Technology
,
2007
).
22.
M.
Hossain
,
D. K.
Vu
, and
P.
Steinmann
, “
Experimental study and numerical modelling of VHB 4910 polymer
,”
Comput. Mater. Sci.
59
,
65
74
(
2012
).
23.
M. K.
Small
and
W.
Nix
, “
Analysis of the accuracy of the bulge test in determining the mechanical properties of thin films
,”
J. Mater. Res.
7
,
1553
1563
(
1992
).
24.
C.
Huang
,
W.
Lou
,
C.
Tsai
,
T.-C.
Wu
, and
H.-Y.
Lin
, “
Mechanical properties of polymer thin film measured by the bulge test
,”
Thin Solid Films
515
,
7222
7226
(
2007
).
25.
J.
Vlassak
and
W.
Nix
, “
A new bulge test technique for the determination of Young's modulus and Poisson's ratio of thin films
,”
J. Mater. Res.
7
,
3242
3249
(
1992
).
26.
G.
Gutscher
,
H.-C.
Wu
,
G.
Ngaile
, and
T.
Altan
, “
Determination of flow stress for sheet metal forming using the viscous pressure bulge (VPB) test
,”
J. Mater. Process. Technol.
146
,
1
7
(
2004
).
27.
A.
Ranta-Eskola
, “
Use of the hydraulic bulge test in biaxial tensile testing
,”
Int. J. Mech. Sci.
21
,
457
465
(
1979
).
28.
J.-Y.
Sheng
,
L.-Y.
Zhang
,
B.
Li
,
G.-F.
Wang
, and
X.-Q.
Feng
, “
Bulge test method for measuring the hyperelastic parameters of soft membranes
,”
Acta Mech.
228
,
4187
4197
(
2017
).
29.
S.
Raayai-Ardakani
,
Z.
Chen
,
D. R.
Earl
, and
T.
Cohen
, “
Volume-controlled cavity expansion for probing of local elastic properties in soft materials
,”
Soft Matter
15
,
381
392
(
2019
).
30.
A. F.
Bower
,
Applied Mechanics of Solids
(
CRC Press
,
2009
).
31.
R. M.
Waldman
and
K. S.
Breuer
, “
Camber and aerodynamic performance of compliant membrane wings
,”
J. Fluids Struct.
68
,
390
402
(
2017
).
32.
C. O.
Horgan
, “
The remarkable gent constitutive model for hyperelastic materials
,”
Int. J. Non-Linear Mech.
68
,
9
16
(
2015
).

Supplementary Material

You do not currently have access to this content.