Beta-phase gallium oxide (β-Ga2O3), the most thermally stable phase of Ga2O3, has stimulated great interest in power electronics due to its ultra-wide bandgap (∼4.9 eV) and high breakdown electric field. The relatively low thermal conductivity of β-Ga2O3, however, limits the device performance due to excessive temperature driven by self-heating. Recently, integrating β-Ga2O3 thin films on substrates with high thermal conductivities has been proposed to improve heat rejection and device reliability. In this work, we prepare high-quality single-crystal β-Ga2O3 thin films by mechanical exfoliation of bulk crystals and study their thermal transport properties. Both the anisotropic thermal conductivity of β-Ga2O3 bulk crystals and the thickness-dependent thermal conductivity of β-Ga2O3 thin films are measured using the time-domain thermoreflectance technique. The reduction in the thin-film thermal conductivity, compared to the bulk value, can be well explained by the size effect resulting from the enhanced phonon-boundary scattering when the film thickness decreases. This work not only provides fundamental insight into the thermal transport mechanisms for high-quality β-Ga2O3 thin films but also facilitates the design and optimization of β-Ga2O3-based electronic devices.

1.
M.
Higashiwaki
,
K.
Sasaki
,
H.
Murakami
,
Y.
Kumagai
,
A.
Koukitu
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
,
Semicond. Sci. Technol.
31
(
3
),
034001
(
2016
).
2.
M.
Higashiwaki
,
K.
Konishi
,
K.
Sasaki
,
K.
Goto
,
K.
Nomura
,
Q.
Tu Thieu
,
R.
Togashi
,
H.
Murakami
,
Y.
Kumagai
, and
B.
Monemar
,
Appl. Phys. Lett.
108
(
13
),
133503
(
2016
).
3.
M.
Higashiwaki
,
K.
Sasaki
,
T.
Kamimura
,
M.
Hoi Wong
,
D.
Krishnamurthy
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
,
Appl. Phys. Lett.
103
(
12
),
123511
(
2013
).
4.
M.
Higashiwaki
,
K.
Sasaki
,
A.
Kuramata
,
T.
Masui
, and
S.
Yamakoshi
,
Appl. Phys. Lett.
100
(
1
),
013504
(
2012
).
5.
H.
Zhou
,
J.
Zhang
,
C.
Zhang
,
Q.
Feng
,
S.
Zhao
,
P.
Ma
, and
Y.
Hao
,
J. Semicond.
40
(
1
),
011803
(
2019
).
6.
M.
Hoi Wong
,
K.
Sasaki
,
A.
Kuramata
,
S.
Yamakoshi
, and
M.
Higashiwaki
,
IEEE Electron Device Lett.
37
(
2
),
212
(
2016
).
7.
S. J.
Pearton
,
F.
Ren
,
M.
Tadjer
, and
J.
Kim
,
J. Appl. Phys.
124
(
22
),
220901
(
2018
).
8.
A. E.
Romanov
,
S. I.
Stepanov
,
V. I.
Nikolaev
, and
V. E.
Bougrov
,
Rev. Adv. Mater. Sci.
44
,
63
(
2016
).
9.
S.
Shin
,
M. A.
Wahab
,
M.
Masuduzzaman
,
K.
Maize
,
J.
Gu
,
M.
Si
,
A.
Shakouri
,
D. Y.
Peide
, and
M. A.
Alam
,
IEEE Trans. Electron Devices
62
(
11
),
3516
(
2015
).
10.
J. W.
Pomeroy
,
C.
Middleton
,
M.
Singh
,
S.
Dalcanale
,
M. J.
Uren
,
M. H.
Wong
,
K.
Sasaki
,
A.
Kuramata
,
S.
Yamakoshi
, and
M.
Higashiwaki
,
IEEE Electron Device Lett.
40
(
2
),
189
(
2019
).
11.
M.
Hoi Wong
,
Y.
Morikawa
,
K.
Sasaki
,
A.
Kuramata
,
S.
Yamakoshi
, and
M.
Higashiwaki
,
Appl. Phys. Lett.
109
(
19
),
193503
(
2016
).
12.
B.
Chatterjee
,
A.
Jayawardena
,
E.
Heller
,
D. W.
Snyder
,
S.
Dhar
, and
S.
Choi
,
Rev. Sci. Instrum.
89
(
11
),
114903
(
2018
).
13.
B.
Chatterjee
,
K.
Zeng
,
C. D.
Nordquist
,
U.
Singisetti
, and
S.
Choi
,
IEEE Trans. Compon., Packag. Manuf. Technol.
9
(
12
),
2352
(
2019
).
14.
N. A.
Blumenschein
,
N. A.
Moser
,
E. R.
Heller
,
N. C.
Miller
,
A. J.
Green
,
A.
Popp
,
A.
Crespo
,
K.
Leedy
,
M.
Lindquist
, and
T.
Moule
,
IEEE Trans. Electron Devices
67
(
1
),
204
(
2020
).
15.
P.
Jiang
,
X.
Qian
,
X.
Li
, and
R.
Yang
,
Appl. Phys. Lett.
113
(
23
),
232105
(
2018
).
16.
Z.
Guo
,
A.
Verma
,
X.
Wu
,
F.
Sun
,
A.
Hickman
,
T.
Masui
,
A.
Kuramata
,
M.
Higashiwaki
,
D.
Jena
, and
T.
Luo
,
Appl. Phys. Lett.
106
(
11
),
111909
(
2015
).
17.
M.
Handwerg
,
R.
Mitdank
,
Z.
Galazka
, and
S. F.
Fischer
,
Semicond. Sci. Technol.
30
(
2
),
024006
(
2015
).
18.
V. I.
Nikolaev
,
V.
Maslov
,
S. I.
Stepanov
,
A. I.
Pechnikov
,
V.
Krymov
,
I. P.
Nikitina
,
L. I.
Guzilova
,
V. E.
Bougrov
, and
A. E.
Romanov
,
J. Cryst. Growth.
457
,
132
(
2017
).
19.
N.
Blumenschein
,
M.
Slomski
,
P. P.
Paskov
,
F.
Kaess
,
M. H.
Breckenridge
,
J. F.
Muth
, and
T.
Paskova
, in paper presented at
the Oxide-Based Materials and Devices IX
(
2018
).
20.
M.
Slomski
,
N.
Blumenschein
,
P. P.
Paskov
,
J. F.
Muth
, and
T.
Paskova
,
J. Appl. Phys.
121
(
23
),
235104
(
2017
).
21.
Q.
Zheng
,
C.
Li
,
A.
Rai
,
J. H.
Leach
,
D. A.
Broido
, and
D. G.
Cahill
,
Phys. Rev. Mater.
3
(
1
),
014601
(
2019
).
22.
M. A.
Mastro
,
A.
Kuramata
,
J.
Calkins
,
J.
Kim
,
F.
Ren
, and
S. J.
Pearton
,
ECS J. Solid State Sci. Technol.
6
(
5
),
P356
(
2017
).
23.
J.
Noh
,
M.
Si
,
H.
Zhou
,
M. J.
Tadjer
, and
P. D.
Ye
, “
The impact of substrates on the performance of top-gate p-Ga203 field-effect transistors: record high drain current of 980 mA/mm on diamond
,”
2018 76th Device Research Conference (DRC), Santa Barbara, CA, 24-27 June 2018
(
IEEE
,
2018
), pp.
1
2
.
24.
H.
Zhou
,
K.
Maize
,
J.
Noh
,
A.
Shakouri
, and
P. D.
Ye
,
ACS Omega
2
(
11
),
7723
(
2017
).
25.
J.
Oh
,
J.
Ma
, and
G.
Yoo
,
Results Phys.
13
,
102151
(
2019
).
26.
C.-H.
Lin
,
N.
Hatta
,
K.
Konishi
,
S.
Watanabe
,
A.
Kuramata
,
K.
Yagi
, and
M.
Higashiwaki
,
Appl. Phys. Lett.
114
(
3
),
032103
(
2019
).
27.
Z.
Cheng
,
V. D.
Wheeler
,
T.
Bai
,
J.
Shi
,
M. J.
Tadjer
,
T.
Feygelson
,
K. D.
Hobart
,
M. S.
Goorsky
, and
S.
Graham
,
Appl. Phys. Lett.
116
(
6
),
062105
(
2020
).
28.
Z.
Cheng
,
L.
Yates
,
J.
Shi
,
M. J.
Tadjer
,
K. D.
Hobart
, and
S.
Graham
,
APL Mater.
7
(
3
),
031118
(
2019
).
29.
S.
Rafique
,
L.
Han
, and
H.
Zhao
,
ECS Trans.
80
(
7
),
203
(
2017
).
30.
C. J.
Szwejkowski
,
N. C.
Creange
,
K.
Sun
,
A.
Giri
,
B. F.
Donovan
,
C.
Constantin
, and
P. E.
Hopkins
,
J. Appl. Phys.
117
(
8
),
084308
(
2015
).
31.
W.
Sik Hwang
,
A.
Verma
,
H.
Peelaers
,
V.
Protasenko
,
S.
Rouvimov
,
H.
Xing
,
A.
Seabaugh
,
W.
Haensch
,
C.
Van de Walle
, and
Z.
Galazka
,
Appl. Phys. Lett.
104
(
20
),
203111
(
2014
).
32.
H.
Zhou
,
M.
Si
,
S.
Alghamdi
,
G.
Qiu
,
L.
Yang
, and
D. Y.
Peide
,
IEEE Electron Device Lett.
38
(
1
),
103
(
2017
).
33.
Z.
Galazka
,
K.
Irmscher
,
R.
Uecker
,
R.
Bertram
,
M.
Pietsch
,
A.
Kwasniewski
,
M.
Naumann
,
T.
Schulz
,
R.
Schewski
, and
D.
Klimm
,
J. Cryst. Growth.
404
,
184
(
2014
).
34.
J.
Zhu
,
H.
Park
,
J.-Y.
Chen
,
X.
Gu
,
H.
Zhang
,
S.
Karthikeyan
,
N.
Wendel
,
S. A.
Campbell
,
M.
Dawber
, and
X.
Du
,
Adv. Electron. Mater.
2
(
5
),
1600040
(
2016
).
35.
J.
Zhu
,
Y.
Zhu
,
X.
Wu
,
H.
Song
,
Y.
Zhang
, and
X.
Wang
,
Appl. Phys. Lett.
108
(
23
),
231903
(
2016
).
36.
D. G.
Cahill
,
Rev. Sci. Instrum.
75
(
12
),
5119
(
2004
).
37.
J.
Zhu
,
X.
Wu
,
D. M.
Lattery
,
W.
Zheng
, and
X.
Wang
,
Nanosc. Microsc. Therm.
21
(
3
),
177
(
2017
).
38.
C.
Kranert
,
C.
Sturm
,
R.
Schmidt-Grund
, and
M.
Grundmann
,
Sci. Rep.
6
,
35964
(
2016
).
39.
A. J.
Schmidt
,
X.
Chen
, and
G.
Chen
,
Rev. Sci. Instrum.
79
(
11
),
114902
(
2008
).
40.
G. T.
Hohensee
,
W.-P.
Hsieh
,
M. D.
Losego
, and
D. G.
Cahill
,
Rev. Sci. Instrum.
83
(
11
),
114902
(
2012
).
41.
G. L.
Eesley
,
B. M.
Clemens
, and
C. A.
Paddock
,
Appl. Phys. Lett.
50
(
12
),
717
(
1987
).
42.
D. A.
Ditmars
,
C. A.
Plint
, and
R. C.
Shukla
,
Int. J. Thermophys.
6
(
5
),
499
(
1985
).
43.
J.
Zhu
,
D.
Tang
,
W.
Wang
,
J.
Liu
,
K. W.
Holub
, and
R.
Yang
,
J. Appl. Phys.
108
(
9
),
094315
(
2010
).
44.
Z.
Ge
,
D. G.
Cahill
, and
P. V.
Braun
,
J. Phys. Chem. B
108
,
18870
(
2004
).
45.
J. P.
Feser
and
D. G.
Cahill
,
Rev. Sci. Instrum.
83
(
10
),
104901
(
2012
).
46.
D. T.
Morelli
,
J. P.
Heremans
, and
G. A.
Slack
,
Phys. Rev. B
66
(
19
),
195304
(
2002
).
47.
M. D.
Santia
,
N.
Tandon
, and
J. D.
Albrecht
,
Appl. Phys. Lett.
107
(
4
),
041907
(
2015
).
48.
J. R.
Lukes
,
D. Y.
Li
,
X.-G.
Liang
, and
C.-L.
Tien
,
J. Heat Transfer
122
(
3
),
536
(
2000
).

Supplementary Material

You do not currently have access to this content.