Mid-infrared intersubband transitions are investigated in nonpolar m-plane and a-plane GaN/AlGaN multi-quantum well heterostructures. Nominally identical heterostructures were grown by ammonia molecular-beam epitaxy on free-standing m-plane and a-plane GaN substrates. A total of 12 well- and barrier-doped samples with intersubband transition energies in the range of 220–320 meV (wavelength range 3.8–5.6 μm) were grown. The intersubband absorption lines of the m-plane samples were 10–40% narrower than those of the a-plane samples, and a very narrow intersubband absorption linewidth of 38 meV (full width at half maximum) at a transition energy of approximately 250 meV (5 μm wavelength) was observed in an m-plane sample. Narrower intersubband absorption linewidths of m-plane samples can be explained by more abrupt heterostructure interfaces revealed by structural characterization, which is attributed to a higher stability of the m-plane compared to the a-plane. No significant difference in the intersubband absorption linewidth was observed between the barrier- and well-doped samples.

1.
H.
Morkoç
,
Handbook of Nitride Semiconductors and Devices, Materials Properties, Physics and Growth
(
John Wiley & Sons
,
2009
).
2.
D.
Feezell
and
S.
Nakamura
,
C. R. Phys.
19
,
113
(
2018
).
3.
N.
Suzuki
and
N.
Iizuka
,
Jpn. J. Appl. Phys., Part II
36
,
L1006
(
1997
).
4.
C.
Gmachl
,
S. V.
Frolov
,
H. M.
Ng
,
S.-N. G.
Chu
, and
A. Y.
Cho
,
Electron. Lett.
37
,
378
(
2001
).
5.
J.
Hamazaki
,
S.
Matsui
,
H.
Kunugita
,
K.
Ema
,
H.
Kanazawa
,
T.
Tachibana
,
A.
Kikuchi
, and
K.
Kishino
,
Appl. Phys. Lett.
84
,
1102
(
2004
).
6.
E.
Bellotti
,
K.
Driscoll
,
T. D.
Moustakas
, and
R.
Paiella
,
J. Appl. Phys.
105
,
113103
(
2009
).
7.
G.
Sun
,
J. B.
Khurgin
, and
D. P.
Tsai
,
Opt. Express
21
,
28054
(
2013
).
8.
C. B.
Lim
,
M.
Beeler
,
A.
Ajay
,
J.
Lähnemann
,
E.
Bellet-Amalric
,
C.
Bougerol
,
J.
Schörmann
,
M.
Eickhoff
, and
E.
Monroy
,
Jpn. J. Appl. Phys., Part 1
55
,
05FG05
(
2016
).
9.
R.
Köhler
,
A.
Tredicucci
,
F.
Beltram
,
H. E.
Beere
,
E. H.
Linfield
,
A. G.
Davies
,
D. A.
Ritchie
,
R. C.
Iotti
, and
F.
Rossi
,
Nature
417
,
156
(
2002
).
10.
B. S.
Williams
,
Nat. Photonics
1
,
517
(
2007
).
11.
C.
Gmachl
,
H. M.
Ng
, and
A. Y.
Cho
,
Appl. Phys. Lett.
77
,
334
(
2000
).
12.
J. M.
Li
,
Y. W.
,
D. B.
Li
,
X. X.
Han
,
Q. S.
Zhu
,
X. L.
Liu
, and
Z. G.
Wang
,
J. Vac. Sci. Technol., B
22
,
2568
(
2004
).
13.
K.
Kishino
,
A.
Kikuchi
,
H.
Kanazawa
, and
T.
Tachibana
,
Appl. Phys. Lett.
81
,
1234
(
2002
).
14.
N.
Suzuki
and
N.
Iizuka
,
Jpn. J. Appl. Phys., Part 2
38
,
L363
(
1999
).
15.
M.
Monavarian
,
A.
Rashidi
, and
D.
Feezell
,
Phys. Status Solidi A
216
,
1800628
(
2019
).
16.
B.
Gil
,
Physics of Wurtzite Nitrides Oxides
(
Springer
,
Cham
,
2014
), pp.
1
48
.
17.
D.
Feezell
,
Y.
Sharma
, and
S.
Krishna
,
J. Appl. Phys.
113
,
133103
(
2013
).
18.
A.
Pesach
,
E.
Gross
,
C.-Y.
Huang
,
Y.-D.
Lin
,
A.
Vardi
,
S. E.
Schacham
,
S.
Nakamura
, and
G.
Bahir
,
Appl. Phys. Lett.
103
,
022110
(
2013
).
19.
C.
Edmunds
,
J.
Shao
,
M.
Shirazi-HD
,
M. J.
Manfra
, and
O.
Malis
,
Appl. Phys. Lett.
105
,
021109
(
2014
).
20.
C. B.
Lim
,
A.
Ajay
,
C.
Bougerol
,
B.
Haas
,
J.
Schörmann
,
M.
Beeler
,
J.
Lähnemann
,
M.
Eickhoff
, and
E.
Monroy
,
Nanotechnology
26
,
435201
(
2015
).
21.
T. D.
Moustakas
and
R.
Paiella
,
Rep. Prog. Phys.
80
,
106501
(
2017
).
22.
T.
Kotani
,
M.
Arita
, and
Y.
Arakawa
,
Appl. Phys. Lett.
105
,
261108
(
2014
).
23.
C.
Gmachl
and
H. M.
Ng
,
Electron. Lett.
39
,
567
(
2003
).
24.
C. B.
Lim
,
M.
Beeler
,
A.
Ajay
,
J.
Lähnemann
,
E.
Bellet-Amalric
,
C.
Bougerol
, and
E.
Monroy
,
J. Appl. Phys.
118
,
014309
(
2015
).
25.
H.
Asahi
and
Y.
Horikoshi
,
Molecular Beam Epitaxy: Materials and Applications for Electronics and Optoelectronics
(
John Wiley & Sons
,
2019
).
26.
A. N.
Westmeyer
,
S.
Mahajan
,
K. K.
Bajaj
,
J. Y.
Lin
,
H. X.
Jiang
,
D. D.
Koleske
, and
R. T.
Senger
,
J. Appl. Phys.
99
,
013705
(
2006
).
27.
M.
Helm
, in
Semiconductors and Semimetals
, edited by
H. C.
Liu
and
F.
Capasso
(
Elsevier
,
1999
), pp.
1
99
.
28.
L.
Hedin
and
B. I.
Lundqvist
,
J. Phys. C
4
,
2064
(
1971
).
29.
O.
Gunnarsson
and
B. I.
Lundqvist
,
Phys. Rev. B
13
,
4274
(
1976
).
30.
T.
Kotani
,
M.
Arita
, and
Y.
Arakawa
,
Appl. Phys. Lett.
107
,
112107
(
2015
).
31.
K. M. S. V.
Bandara
,
D. D.
Coon
,
B.
Byungsung
,
Y. F.
Lin
, and
M. H.
Francombe
,
Appl. Phys. Lett.
53
,
1931
(
1988
).
32.
K. M. S. V.
Bandara
,
D. D.
Coon
,
B.
Byungsung
,
Y. F.
Lin
, and
M. H.
Francombe
,
Appl. Phys. Lett.
55
,
206
(
1989
).
33.
T.
Nguyen
,
M.
Shirazi-Hosseini-Dokht
,
Y.
Cao
,
R. E.
Diaz
,
G. C.
Gardner
,
M. J.
Manfra
, and
O.
Malis
,
Phys. Status Solidi A
215
,
1700828
(
2018
).
34.
B.
Imer
,
F.
Wu
,
M. D.
Craven
,
J. S.
Speck
, and
S. P.
DenBaars
,
Jpn. J. Appl. Phys., Part 1
45
,
8644
(
2006
).
35.
B. N.
Bryant
,
A.
Hirai
,
E. C.
Young
,
S.
Nakamura
, and
J. S.
Speck
,
J. Cryst. Growth
369
,
14
(
2013
).
36.
Q.
Sun
,
C. D.
Yerino
,
B.
Leung
,
J.
Han
, and
M. E.
Coltrin
,
J. Appl. Phys.
110
,
053517
(
2011
).
37.
Q.
Sun
,
C. D.
Yerino
,
T. S.
Ko
,
Y. S.
Cho
,
I.-H.
Lee
,
J.
Han
, and
M. E.
Coltrin
,
J. Appl. Phys.
104
,
093523
(
2008
).
38.
D.
Du
,
D. J.
Srolovitz
,
M. E.
Coltrin
, and
C. C.
Mitchell
,
Phys. Rev. Lett.
95
,
155503
(
2005
).
39.
K.
Driscoll
,
Y.
Liao
,
A.
Bhattacharyya
,
L.
Zhou
,
D. J.
Smith
,
T. D.
Moustakas
, and
R.
Paiella
,
Appl. Phys. Lett.
94
,
081120
(
2009
).
40.
T.
Kotani
,
M.
Arita
,
K.
Hoshino
, and
Y.
Arakawa
,
Appl. Phys. Lett.
108
,
052102
(
2016
).
41.
X. Y.
Liu
,
P.
Holmström
,
P.
Jänes
,
L.
Thylén
, and
T. G.
Andersson
,
Phys. Status Solidi B
244
,
2892
(
2007
).

Supplementary Material

You do not currently have access to this content.