The semiconductor MoS2 has attracted much attention owing to its sizable energy bandgap, significant spin–orbit coupling, and quantum effects such as the valley Hall effect and gate-induced superconductivity. However, in electronic devices, the energy bandgap usually gives rise to the formation of Schottky barriers at the interface to the contact metal, which may render devices intended for quantum transport inapplicable at low temperature. Therefore, the fabrication of Ohmic contacts operational at low temperature is crucial. Yet, it currently remains a substantial challenge to produce low resistive contacts with a simple process. We manifest that low temperature Ohmic contacts to mono- and few-layer MoS2 can be achieved with Tin (Sn) as the contact metal. Sn is directly evaporated onto MoS2, and hence, this establishes a much easier fabrication method than tunneling barriers, for example. We provide detailed device characterization, extract Schottky barrier heights, demonstrate multiterminal measurements, and propose a possible explanation: strain induced deformation of MoS2 imposed by Sn.

1.
O.
Lopez-Sanchez
,
E.
Alarcon Llado
,
V.
Koman
,
A.
Fontcuberta i Morral
,
A.
Radenovic
, and
A.
Kis
,
ACS Nano
8
,
3042
(
2014
).
2.
B. W.
Baugher
,
H. O.
Churchill
,
Y.
Yang
, and
P.
Jarillo-Herrero
,
Nat. Nanotechnol.
9
,
262
(
2014
).
3.
L.
Yin
,
X.
Zhan
,
K.
Xu
,
F.
Wang
,
Z.
Wang
,
Y.
Huang
,
Q.
Wang
,
C.
Jiang
, and
J.
He
,
Appl. Phys. Lett.
108
,
043503
(
2016
).
4.
D.
Xiao
,
G.-B.
Liu
,
W.
Feng
,
X.
Xu
, and
W.
Yao
,
Phys. Rev. Lett.
108
,
196802
(
2012
).
5.
K. F.
Mak
,
K. L.
McGill
,
J.
Park
, and
P. L.
McEuen
,
Science
344
,
1489
(
2014
).
6.
N.
Ubrig
,
S.
Jo
,
M.
Philippi
,
D.
Costanzo
,
H.
Berger
,
A. B.
Kuzmenko
, and
A. F.
Morpurgo
,
Nano Lett.
17
,
5719
(
2017
).
7.
J. T.
Ye
,
Y. J.
Zhang
,
R.
Akashi
,
M. S.
Bahramy
,
R.
Arita
, and
Y.
Iwasa
,
Science
338
,
1193
(
2012
).
8.
D.
Costanzo
,
S.
Jo
,
H.
Berger
, and
A. F.
Morpurgo
,
Nat. Nanotechnol.
11
,
339
(
2016
).
9.
L.
Li
,
E.
O'Farrell
,
K.
Loh
,
G.
Eda
,
B.
Özyilmaz
, and
A. C.
Neto
,
Nature
529
,
185
(
2016
).
10.
A.
Rai
,
H. C. P.
Movva
,
A.
Roy
,
D.
Taneja
,
S.
Chowdhury
, and
S. K.
Banerjee
,
Crystals
8
,
316
(
2018
).
11.
S.
Wang
,
Z.
Yu
, and
X.
Wang
,
J. Semicond.
39
,
124001
(
2018
).
12.
D. S.
Schulman
,
A. J.
Arnold
, and
S.
Das
,
Chem. Soc. Rev.
47
,
3037
(
2018
).
13.
S.
Das
,
H.-Y.
Chen
,
A. V.
Penumatcha
, and
J.
Appenzeller
,
Nano Lett.
13
,
100
(
2013
).
14.
Y.
Liu
,
J.
Guo
,
E.
Zhu
,
L.
Liao
,
S.-J.
Lee
,
M.
Ding
,
I.
Shakir
,
V.
Gambin
,
Y.
Huang
, and
X.
Duan
,
Nature
557
,
996
(
2018
).
15.
L.
Yu
,
Y.-H.
Lee
,
X.
Ling
,
E. J. G.
Santos
,
Y. C.
Shin
,
Y.
Lin
,
M.
Dubey
,
E.
Kaxiras
,
J.
Kong
,
H.
Wang
, and
T.
Palacios
,
Nano Lett.
14
,
3055
(
2014
).
16.
X.
Cui
,
G.-H.
Lee
,
Y. D.
Kim
,
G.
Arefe
,
P. Y.
Huang
,
C.-H.
Lee
,
D. A.
Chenet
,
X.
Zhang
,
L.
Wang
,
F.
Ye
,
F.
Pizzocchero
,
B. S.
Jessen
,
K.
Watanabe
,
T.
Taniguchi
,
D. A.
Muller
,
T.
Low
,
P.
Kim
, and
J.
Hone
,
Nat. Nanotechnol.
10
,
534
(
2015
).
17.
R.
Pisoni
,
Y.
Lee
,
H.
Overweg
,
M.
Eich
,
P.
Simonet
,
K.
Watanabe
,
T.
Taniguchi
,
R.
Gorbachev
,
T.
Ihn
, and
K.
Ensslin
,
Nano Lett.
17
,
5008
(
2017
).
18.
A.
Dankert
,
L.
Langouche
,
M. V.
Kamalakar
, and
S. P.
Dash
,
ACS Nano
8
,
476
(
2014
).
19.
N.
Kaushik
,
D.
Karmakar
,
A.
Nipane
,
S.
Karande
, and
S.
Lodha
,
ACS Appl. Mater. Interfaces
8
,
256
(
2016
).
20.
X.
Cui
,
E.-M.
Shih
,
L. A.
Jauregui
,
S. H.
Chae
,
Y. D.
Kim
,
B.
Li
,
D.
Seo
,
K.
Pistunova
,
J.
Yin
,
J.-H.
Park
,
H.-J.
Choi
,
Y. H.
Lee
,
K.
Watanabe
,
T.
Taniguchi
,
P.
Kim
,
C. R.
Dean
, and
J. C.
Hone
,
Nano Lett.
17
,
4781
(
2017
).
21.
L.-L.
Chua
,
J.
Zaumseil
,
J.-F.
Chang
,
E. C.-W.
Ou
,
P. K.-H.
Ho
,
H.
Sirringhaus
, and
R. H.
Friend
,
Nature
434
,
194
(
2005
).
22.
R.
Pisoni
,
Z.
Lei
,
P.
Back
,
M.
Eich
,
H.
Overweg
,
Y.
Lee
,
K.
Watanabe
,
T.
Taniguchi
,
T.
Ihn
, and
K.
Ensslin
,
Appl. Phys. Lett.
112
,
123101
(
2018
).
23.
G.-S.
Kim
,
S.-H.
Kim
,
J.
Park
,
K. H.
Han
,
J.
Kim
, and
H.-Y.
Yu
,
ACS Nano
12
,
6292
(
2018
).
24.
W. M.
Haynes
,
CRC Handbook of Chemistry and Physics
(
CRC Press
,
2014
).
25.
S. W.
Han
,
H.
Kwon
,
S. K.
Kim
,
S.
Ryu
,
W. S.
Yun
,
D. H.
Kim
,
J. H.
Hwang
,
J.-S.
Kang
,
J.
Baik
,
H. J.
Shin
, and
S. C.
Hong
,
Phys. Rev. B
84
,
045409
(
2011
).
26.
M. Y.
Han
,
J. C.
Brant
, and
P.
Kim
,
Phys. Rev. Lett.
104
,
056801
(
2010
).
27.
S.
Ghatak
,
A. N.
Pal
, and
A.
Ghosh
,
ACS Nano
5
,
7707
(
2011
).
28.
H.
Qiu
,
T.
Xu
,
Z.
Wang
,
W.
Ren
,
H.
Nan
,
Z.
Ni
,
Q.
Chen
,
S.
Yuan
,
F.
Miao
,
F.
Song
,
G.
Long
,
Y.
Shi
,
L.
Sun
,
J.
Wang
, and
X.
Wang
,
Nat. Commun.
4
,
2642
(
2013
).
29.
C. D.
English
,
G.
Shine
,
V. E.
Dorgan
,
K. C.
Saraswat
, and
E.
Pop
,
Nano Lett.
16
,
3824
(
2016
).
30.
J.
Kwon
,
J.-Y.
Lee
,
Y.-J.
Yu
,
C.-H.
Lee
,
X.
Cui
,
J.
Hone
, and
G.-H.
Lee
,
Nanoscale
9
,
6151
(
2017
).
31.
B.
Radisavljevic
and
A.
Kis
,
Nat. Mater.
12
,
815
(
2013
).
32.
A.
Allain
,
J.
Kang
,
K.
Banerjee
, and
A.
Kis
,
Nat. Mater.
14
,
1195
(
2015
).
33.
C. N. R.
Rao
and
W. U.
Vasudeo
,
2D Inorganic Materials beyond Graphene
(
World Scientific
,
2017
).
34.
T. S.
Sreeprasad
,
P.
Nguyen
,
N.
Kim
, and
V.
Berry
,
Nano Lett.
13
,
4434
(
2013
).
35.
S.
Mignuzzi
,
A. J.
Pollard
,
N.
Bonini
,
B.
Brennan
,
I. S.
Gilmore
,
M. A.
Pimenta
,
D.
Richards
, and
D.
Roy
,
Phys. Rev. B
91
,
195411
(
2015
).
36.
Y.
Wang
,
C.
Cong
,
C.
Qiu
, and
T.
Yu
,
Small
9
,
2857
(
2013
).
37.
H. J.
Conley
,
B.
Wang
,
J. I.
Ziegler
,
R. F.
Haglund
,
S. T.
Pantelides
, and
K. I.
Bolotin
,
Nano Lett.
13
,
3626
(
2013
).
38.
C. R.
Zhu
,
G.
Wang
,
B. L.
Liu
,
X.
Marie
,
X. F.
Qiao
,
X.
Zhang
,
X. X.
Wu
,
H.
Fan
,
P. H.
Tan
,
T.
Amand
, and
B.
Urbaszek
,
Phys. Rev. B
88
,
121301
(
2013
).
39.
C.
Rice
,
R. J.
Young
,
R.
Zan
,
U.
Bangert
,
D.
Wolverson
,
T.
Georgiou
,
R.
Jalil
, and
K. S.
Novoselov
,
Phys. Rev. B
87
,
081307
(
2013
).
40.
D.
Lloyd
,
X.
Liu
,
J. W.
Christopher
,
L.
Cantley
,
A.
Wadehra
,
B. L.
Kim
,
B. B.
Goldberg
,
A. K.
Swan
, and
J. S.
Bunch
,
Nano Lett.
16
,
5836
(
2016
).
41.
K.
He
,
C.
Poole
,
K. F.
Mak
, and
J.
Shan
,
Nano Lett.
13
,
2931
(
2013
).
42.
W. S.
Yun
,
S. W.
Han
,
S. C.
Hong
,
I. G.
Kim
, and
J. D.
Lee
,
Phys. Rev. B
85
,
033305
(
2012
).
43.
H.
Peelaers
and
C. G.
Van de Walle
,
Phys. Rev. B
86
,
241401
(
2012
).
44.
F.
Stern
and
W. E.
Howard
,
Phys. Rev.
163
,
816
(
1967
).
45.
S. M.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
(
John Wiley & Sons
,
2006
).

Supplementary Material

You do not currently have access to this content.