A high-voltage LiNi0.5Mn1.5O4 (LNMO) cathode was modified by Li2ZrO3 (LZO), a fast ion conductor with a unique core–shell crystalline-amorphous structure. The electrochemical results indicated a greatly improved capacity retention for LNMO-1LZO compared to LNMO. Moreover, the rate performance (100 mAh·g−1) of LNMO-1LZO at a high current density of 10 C was superior to those of pristine LNMO and other modified samples. The enhanced electrochemical performance was ascribed to the generation of dual-phase island-shaped LZO with an interior crystalline phase, which accelerated Li+ diffusion, and an exterior amorphous shell, which enhanced interfacial compatibility and stability without influencing the intrinsic spinel structure of bulk LNMO. Thus, modification with this hybrid material has the remarkable synergetic effect of enhancing interfacial Li+ diffusion and stabilizing the interfacial structure during cycling.

1.
A.
Manthiram
,
K.
Chemelewski
, and
E. S.
Lee
,
Energy Environ. Sci.
7
(
4
),
1339
(
2014
).
2.
J. W.
Qian
,
L.
Liu
,
J. X.
Yang
,
S. Y.
Li
,
X.
Wang
,
H. L.
Zhuang
, and
Y. Y.
Lu
,
Nat. Commun.
9
(
1
),
4918
(
2018
).
3.
Y. L.
Ding
,
J.
Xie
,
G. S.
Cao
,
T. J.
Zhu
,
H. M.
Yu
, and
X. B.
Zhao
,
Adv. Funct. Mater.
21
(
2
),
348
(
2011
).
4.
J. T.
Hu
,
W.
Li
,
Y. D.
Duan
,
S. H.
Cui
,
X. H.
Song
,
Y. D.
Liu
,
J. X.
Zheng
,
Y.
Lin
, and
F.
Pan
,
Adv. Energy Mater.
7
(
5
),
1601894
(
2017
).
5.
D.
Peralta
,
J.
Salomon
,
J. F.
Colin
,
A.
Boulineau
,
C.
Bourbon
,
B.
Amestoy
,
E.
Gutel
,
D.
Bloch
, and
S.
Patoux
,
J. Power Sources
396
(
31
),
527
(
2018
).
6.
S. Y.
Kim
,
W.
Cho
,
X. B.
Zhang
,
Y.
Oshima
, and
J. W.
Choi
,
Nat. Commun.
7
(
1
),
13598
(
2016
).
7.
A.
Banerjee
,
Y.
Shilina
,
B.
Ziv
,
J. M.
Ziegelbauer
,
S.
Luski
,
D.
Aurbach
, and
I. C.
Halalay
,
J. Am. Chem. Soc.
139
(
5
),
1738
(
2017
).
8.
J.
Li
,
Q.
Zhang
,
X.
Xiao
,
Y. T.
Cheng
,
C.
Liang
, and
N. J.
Dudney
,
J. Am. Chem. Soc.
137
(
43
),
13732
(
2015
).
9.
H. P.
Yang
,
H. H.
Wu
,
M. Y.
Ge
,
L. J.
Li
,
Y. F.
Yuan
,
Q.
Yao
,
J.
Chen
,
L. F.
Xia
,
J. M.
Zheng
,
Z. Y.
Chen
,
J. F.
Duan
,
K.
Kisslinger
,
X. C.
Zeng
,
W. K.
Lee
,
Q. B.
Zhang
, and
J.
Lu
,
Adv. Funct. Mater.
29
,
1808825
(
2019
).
10.
H.
Wang
,
M.
Miyauchi
,
Y.
Ishikawa
,
A.
Pyatenko
,
N.
Koshizaki
,
Y.
Li
,
L.
Li
,
X.
Li
,
Y.
Bando
, and
D.
Golberg
,
J. Am. Chem. Soc.
133
(
47
),
19102
(
2011
).
11.
Y. P.
Li
,
Q.
Zhang
,
T. H.
Xu
,
D. D.
Wang
,
D.
Pan
,
H. L.
Zhao
, and
Y.
Bai
,
Ceram. Int.
44
(
4
),
4058
(
2018
).
12.
B. W.
Xiao
,
J.
Liu
,
Q.
Sun
,
B. Q.
Wang
,
M. N.
Banis
,
D.
Zhao
,
Z. Q.
Wang
,
R. Y.
Li
,
X. Y.
Cui
,
T. K.
Sham
, and
X. L.
Sun
,
Adv. Sci.
2
(
5
),
1500022
(
2015
).
13.
L. J.
Li
,
Z. Y.
Chen
,
Q. B.
Zhang
,
M.
Xu
,
X.
Zhou
,
H. L.
Zhu
, and
K. L.
Zhang
,
J. Mater. Chem. A
3
(
2
),
894
(
2015
).
14.
Y.
Xiao
,
L. J.
Miara
,
Y.
Wang
, and
G.
Ceder
,
Joule
3
(
5
),
1252
(
2019
).
15.
R.
Zhao
,
L.
Li
,
T. H.
Xu
,
D. D.
Wang
,
D.
Pan
,
G. J.
He
,
H. L.
Zhao
, and
Y.
Bai
,
ACS Appl. Mater. Interfaces
11
(
9
),
16233
(
2019
).
16.
L.
Li
,
R.
Zhao
,
T. H.
Xu
,
D.
Pan
,
D. D.
Wang
,
K.
Zhang
,
G. J.
He
,
C. Y.
Yu
, and
Y.
Bai
,
Nanoscale
2
(
9
),
8967
(
2019
).
17.
B.
Song
,
W.
Li
,
S. M.
Oh
, and
A.
Manthiram
,
ACS Appl. Mater. Interfaces
9
(
11
),
9718
(
2017
).
18.
W.
Liu
,
Q.
Shi
,
Q.
Qu
,
T.
Gao
,
G.
Zhu
,
J.
Shao
, and
H.
Zheng
,
J. Mater. Chem. A
5
(
1
),
145
(
2017
).
19.
Y.
Li
,
W.
Sun
,
K.
Xie
,
S.
Luo
,
G.
Bai
,
X.
Tan
, and
C.
Zheng
,
Nano Energy
54
,
175
(
2018
).
20.
Y. F.
Deng
,
S. X.
Zhao
,
Y. H.
Xu
,
K.
Gao
, and
C. W.
Nan
,
Chem. Mater.
27
(
22
),
7734
(
2015
).
21.
J. P.
Han
,
B.
Zhang
,
X.
Bai
,
L. Y.
Wang
,
Y. X.
Qi
,
N.
Lun
, and
Y. J.
Bai
,
J. Power Sources
354
,
16
(
2017
).
22.
H. W.
Bang
,
W.
Yoo
,
C.
Kim
,
S. H.
Lee
,
J. Y.
Gu
,
Y. C.
Park
,
K.
Lee
, and
M. H.
Jung
,
Appl. Phys. Lett.
115
(
1
),
012402
(
2019
).
23.
R.
Amin
and
L.
Belharouk
,
J. Power Sources
348
,
318
(
2017
).

Supplementary Material

You do not currently have access to this content.