We investigate electronic thermal rectification in ferromagnetic insulator-based superconducting tunnel junctions. Ferromagnetic insulators coupled to superconductors are known to induce sizable spin splitting in the superconducting density of states and also lead to efficient spin filtering if used as tunnel barriers. The combination of spin splitting and spin filtering is shown to yield a substantial amount of self-amplification of the electronic heat diode effect due to breaking of the electron-hole symmetry in the system, which is added to the thermal asymmetry of the junction. Large spin splitting and large spin polarization (90%) can potentially lead to thermal rectification efficiencies exceeding 5×104% for realistic parameters in a suitable temperature range, thereby outperforming up to a factor of 250, the heat diode effect achievable with conventional superconducting tunnel junctions. These results are relevant for improved control of heat currents in innovative phase-coherent caloritronic nanodevices and for enhanced thermal management of quantum circuits at the nanoscale.

1.
N. A.
Roberts
and
D.
Walker
,
Int. J. Therm. Sci.
50
,
648
(
2011
).
2.
B.
Li
,
L.
Wang
, and
G.
Casati
,
Phys. Rev. Lett.
93
,
184301
(
2004
).
3.
F.
Giazotto
,
T. T.
Heikkilä
,
A.
Luukanen
,
A. M.
Savin
, and
J. P.
Pekola
,
Rev. Mod. Phys.
78
,
217
(
2006
).
4.
A.
Fornieri
and
F.
Giazotto
,
Nat. Nanotechnol.
12
,
944
(
2017
).
5.
M.
Martínez-Pérez
,
P.
Solinas
, and
F.
Giazotto
,
J. Low Temp. Phys.
175
,
813
(
2014
).
6.
A.
Fornieri
,
M. J.
Martínez-Pérez
, and
F.
Giazotto
,
AIP Adv.
5
,
053301
(
2015
).
7.
L.-A.
Wu
and
D.
Segal
,
Phys. Rev. Lett.
102
,
095503
(
2009
).
9.
B.
Li
,
L.
Wang
, and
G.
Casati
,
Appl. Phys. Lett.
88
,
143501
(
2006
).
10.
M.
Terraneo
,
M.
Peyrard
, and
G.
Casati
,
Phys. Rev. Lett.
88
,
094302
(
2002
).
11.
R.
López
and
D.
Sánchez
,
Phys. Rev. B
88
,
045129
(
2013
).
12.
J.
Ren
and
J.-X.
Zhu
,
Phys. Rev. B
87
,
165121
(
2013
).
13.
L.
Bours
,
B.
Sothmann
,
M.
Carrega
,
E.
Strambini
,
A.
Braggio
,
E. M.
Hankiewicz
,
L. W.
Molenkamp
, and
F.
Giazotto
,
Phys. Rev. Appl.
11
,
044073
(
2019
).
14.
T.
Ruokola
and
T.
Ojanen
,
Phys. Rev. B
83
,
241404
(
2011
).
15.
T.
Ruokola
,
T.
Ojanen
, and
A.-P.
Jauho
,
Phys. Rev. B
79
,
144306
(
2009
).
16.
D. M.-T.
Kuo
and
Y-C
Chang
,
Phys. Rev. B
81
,
205321
(
2010
).
17.
A.
Fornieri
,
M. J.
Martínez-Pérez
, and
F.
Giazotto
,
Appl. Phys. Lett.
104
,
183108
(
2014
).
18.
M.
Martínez-Pérez
and
F.
Giazotto
,
Appl. Phys. Lett.
102
,
182602
(
2013
).
19.
F.
Giazotto
and
F.
Bergeret
,
Appl. Phys. Lett.
103
,
242602
(
2013
).
20.
D.
Goury
and
R.
Sánchez
,
Appl. Phys. Lett.
115
,
092601
(
2019
).
21.
P.
Ben-Abdallah
and
S.-A.
Biehs
,
Appl. Phys. Lett.
103
,
191907
(
2013
).
22.
M. J.
Martínez-Pérez
,
A.
Fornieri
, and
F.
Giazotto
,
Nat. Nanotechnol.
10
,
303
(
2015
).
23.
J.
Senior
,
A.
Gubaydullin
,
B.
Karimi
,
J. T.
Peltonen
,
J.
Ankerhold
, and
J. P.
Pekola
,
Commun. Phys.
3
,
40
(
2020
).
24.
R.
Scheibner
,
M.
König
,
D.
Reuter
,
A. D.
Wieck
,
C.
Gould
,
H.
Buhmann
, and
L. W.
Molenkamp
,
New J. Phys.
10
,
083016
(
2008
).
25.
C. W.
Chang
,
D.
Okawa
,
A.
Majumdar
, and
A.
Zettl
,
Science
314
,
1121
(
2006
).
26.
W.
Kobayashi
,
Y.
Teraoka
, and
I.
Terasaki
,
Appl. Phys. Lett.
95
,
171905
(
2009
).
27.
H.
Tian
,
D.
Xie
,
Y.
Yang
,
T.-L.
Ren
,
G.
Zhang
,
Y.-F.
Wang
,
C.-J.
Zhou
,
P.-G.
Peng
,
L.-G.
Wang
, and
L.-T.
Liu
,
Sci. Rep.
2
,
523
(
2012
).
28.
F. S.
Bergeret
,
M.
Silaev
,
P.
Virtanen
, and
T. T.
Heikkilä
,
Rev. Mod. Phys.
90
,
041001
(
2018
).
29.
T. T.
Heikkilä
,
M.
Silaev
,
P.
Virtanen
, and
F. S.
Bergeret
,
Prog. Surf. Sci.
94
,
100540
(
2019
).
30.
A.
Ozaeta
,
P.
Virtanen
,
F.
Bergeret
, and
T.
Heikkilä
,
Phys. Rev. Lett.
112
,
057001
(
2014
).
31.
P.
Machon
,
M.
Eschrig
, and
W.
Belzig
,
Phys. Rev. Lett.
110
,
047002
(
2013
).
32.
P.
Machon
,
M.
Eschrig
, and
W.
Belzig
,
New J. Phys.
16
,
073002
(
2014
).
33.
S.
Kolenda
,
M. J.
Wolf
, and
D.
Beckmann
,
Phys. Rev. Lett.
116
,
097001
(
2016
).
34.
J.
Linder
and
J. W.
Robinson
,
Nat. Phys.
11
,
307
(
2015
).
35.
T.
Tokuyasu
,
J. A.
Sauls
, and
D.
Rainer
,
Phys. Rev. B
38
,
8823
(
1988
).
36.
R.
Dynes
,
J.
Garno
,
G.
Hertel
, and
T.
Orlando
,
Phys. Rev. Lett.
53
,
2437
(
1984
).
37.
J. S.
Moodera
,
T. S.
Santos
, and
T.
Nagahama
,
J. Phys.: Condens. Matter
19
,
165202
(
2007
).
38.
F.
Giazotto
and
M. J.
Martínez-Pérez
,
Nature
492
,
401
(
2012
).
39.
R.
Meservey
and
P.
Tedrow
,
Phys. Rep.
238
,
173
(
1994
).
40.
X.
Hao
,
J.
Moodera
, and
R.
Meservey
,
Phys. Rev. B
42
,
8235
(
1990
).
41.
B.
Li
,
G.-X.
Miao
, and
J. S.
Moodera
,
Phys. Rev. B
88
,
161105
(
2013
).
42.
B.
Li
,
N.
Roschewsky
,
B. A.
Assaf
,
M.
Eich
,
M.
Epstein-Martin
,
D.
Heiman
,
M.
Münzenberg
, and
J. S.
Moodera
,
Phys. Rev. Lett.
110
,
097001
(
2013
).
43.
Y.
Xiong
,
S.
Stadler
,
P.
Adams
, and
G.
Catelani
,
Phys. Rev. Lett.
106
,
247001
(
2011
).
44.
T.
Liu
,
J.
Prestigiacomo
, and
P.
Adams
,
Phys. Rev. Lett.
111
,
027207
(
2013
).
45.
M.
Wolf
,
C.
Sürgers
,
G.
Fischer
, and
D.
Beckmann
,
Phys. Rev. B
90
,
144509
(
2014
).
46.
E.
Strambini
,
V.
Golovach
,
G.
De Simoni
,
J.
Moodera
,
F.
Bergeret
, and
F.
Giazotto
,
Phys. Rev. Mater.
1
,
054402
(
2017
).
47.
G. D.
Simoni
,
E.
Strambini
,
J. S.
Moodera
,
F. S.
Bergeret
, and
F.
Giazotto
,
Nano Lett.
18
,
6369
(
2018
).
48.
M.
Rouco
,
S.
Chakraborty
,
F.
Aikebaier
,
V. N.
Golovach
,
E.
Strambini
,
J. S.
Moodera
,
F.
Giazotto
,
T. T.
Heikkilä
, and
F. S.
Bergeret
,
Phys. Rev. B
100
,
184501
(
2019
).
49.
F.
Giazotto
,
P.
Solinas
,
A.
Braggio
, and
F. S.
Bergeret
,
Phys. Rev. Appl.
4
,
044016
(
2015
).
50.
J. S.
Moodera
,
G.-X.
Miao
, and
T. S.
Santos
,
Phys. Today
63
(
4
),
46
(
2010
).
51.
J.
Moodera
,
X.
Hao
,
G.
Gibson
, and
R.
Meservey
,
Phys. Rev. Lett.
61
,
637
(
1988
).
52.
T. S.
Santos
and
J. S.
Moodera
,
Phys. Rev. B
69
,
241203
(
2004
).
53.
J.
Moodera
,
R.
Meservey
, and
X.
Hao
,
Phys. Rev. Lett.
70
,
853
(
1993
).
54.
T.
Santos
,
J.
Moodera
,
K.
Raman
,
E.
Negusse
,
J.
Holroyd
,
J.
Dvorak
,
M.
Liberati
,
Y.
Idzerda
, and
E.
Arenholz
,
Phys. Rev. Lett.
101
,
147201
(
2008
).
55.
G.-X.
Miao
and
J. S.
Moodera
,
Appl. Phys. Lett.
94
,
182504
(
2009
).
56.
K.
Senapati
,
M. G.
Blamire
, and
Z. H.
Barber
,
Nat. Mater.
10
,
849
(
2011
).
57.
A.
Pal
,
K.
Senapati
,
Z.
Barber
, and
M.
Blamire
,
Adv. Mater.
25
,
5581
(
2013
).
58.
A.
Pal
,
Z.
Barber
,
J.
Robinson
, and
M.
Blamire
,
Nat. Commun.
5
,
3340
(
2014
).
You do not currently have access to this content.